• Title/Summary/Keyword: Forced Vortex Method

Search Result 29, Processing Time 0.021 seconds

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

An Experimental Study on the Effect of Vortex-Type Applied to Design an Axial Flow Fan (축류송풍기의 설계시 적용된 와류형식의 영향에 관한 실험적 연구)

  • Cho, Soo-Yong;Choi, Bum-Seog;Oh, Jong-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.7-16
    • /
    • 1999
  • The flow angle at the inlet and exit of a rotor or stator is an important design parameter involved in the design a fan blade. Flow angles along the radial direction for 3-D stacking are calculated using two kinds of vortex methods, i.e. free vortex method and forced vortex method. The performance test shows that a fan designed by the free vortex method is more efficient than a fan designed by the forced vortex method. As a reference, an imported fan is tested. Even though the straightner of the imported fan is used for the comparison test, the difference of efficiency between the imported fan and the fan designed by the free vortex method is negligible. The noise of the fan designed by the free vortex method is less than that of the imported fan. A bellmouth installed at the fan inlet improved the fan efficiency more than $10\%$.

  • PDF

Axial-Compressor Design with Mean-line Analysis and Vortex Method (평균유속법과 Vortex 방법을 사용한 축류압축기 설계)

  • Choi, Min-Suk;Yoon, Sugn-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.795-800
    • /
    • 2001
  • In this study, a program to design a multi-stage axial compressor is developed wi th mean-line analysis and vortex methods. In a preliminary design stage, a method. to design in a short time is needed and mean-line analysis is usually used for this purpose. Arbitrary pressure ratio and reaction can be assigned to generate overall geometry and several vortex methods are adopted to consider the radial distribution of velocity and reaction. The variation of performance, when we use free vortex, forced vortex, and exponential method, is compared and discussed.

  • PDF

Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator (와류발생기의 가진 주파수에 의한 열전달 향상)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Yea, Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.

A Numerical Study on the Automotive Torque Converter(Part I) - Hydraulic Design and Evaluation of Circulation Flow Rate - (자동차용 토크 컨버터의 수치해석적 연구(Part I) - 수력학적 설계와 순환유량의 평가 -)

  • 김홍식;박재인;주원구;조강래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.28-36
    • /
    • 1998
  • In order to establish the hydraulic design process of the torque converter, pump, turbine and stator were designed by reverse design method including one dimensional analysis, angular momentum distribution and forced vortex design. And the significance of evaluation of the circulation flow rate in torus of the torque converter was verified by numerical calculation if the combined blade rows of pump and turbine. It was confirmed that the computational method using interrow mixing model by Park and Cho was reliable to predict the flow-field and performance of the torque converter.

  • PDF

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

A Study on the Behavior Characteristics of TGL Vortex (Taylor-G$\ddot{o}$rtler-Like(TGL)와의 거동특성에 관한 연구)

  • 이영호;김춘식;조대환;최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.28-37
    • /
    • 1993
  • Flow characteristics within the three-dimensional square cavity are studied experimentally by adopting PIV(Particle Image Velocimetry). A new method for tracking the same particle pairs in the consecutive flow image is suggested resulting in more effective acquisition of the velocity vectors. Two methods for supplying the shearing stress within the cavity are developed by continuous moving belt and 2-dimensional plane Poiseuille flow. The effect of TGL vortex in the case of belt-moving flow is remarkable owing to the distribution of the kinetic energy in the spanwise direction. But, for the plane Poiseuille flow, velocity profiles similar to a forced vortex are obtained and its tendency increases with the Reynolds number.

  • PDF

A Study of the Tip Clearance Effect to the Performance of an Axial-Type Fan (축류형 송풍기의 익단간극이 성능에 미치는 영향에 관한 연구)

  • Cho, Chong-Hyun;Jung, Yang-Beom;Kim, Young-Cheol;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.7-17
    • /
    • 2008
  • Fan performances are obtained with various tip clearance gaps and stagger angles of the rotor. A tested fan is an axial-type fan of which the casing diameter is 806 mm. Two different rotors are applied to this test. One is designed on the basis of the free vortex method along the radial direction and the other is designed using the forced vortex method. The operating conditions are varied to the ultimate off-design point as well as the deign point. Overall efficiency, total pressure and input power are compared with the tip clearance gaps and different stagger angle. The experimental results show that changing of the stagger angle has minor influence to the performance when the same rotor is applied. When the tip clearance gap is less than 5% of the rotor span, the overall efficiency, total pressure loss and input power reduction are varied linearly with the variation of the tip clearance gaps. On the design point, the overall efficiency is decreased to the rate of 2.8-2.9 to the increasing of the tip clearance, but the changing rate of the overall efficiency is alleviated when the fan operates at off-design points. In particular, this rate is more quickly declined on a fan with the rotor designed using the forced vortex method. The result of the total pressure shows that the pressure reduction rate is a 0.08-0.1 according to the tip clearance, and additionally the input power reduction rate is a 0.045-0.065 at design point.

NUMERICAL STUDY OF VORTES-INDUCED VIBRATION FLEXIBLE RISER AND PIPE MODELS (해저석유 생산용 라이저 모형에 대한 Vortex-Induced Vibration 수치계산)

  • Chen, Z.S.;Kim, W.J.;Yoo, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.295-304
    • /
    • 2010
  • The paper summarizes the VIV-related research with the focus on flexible riser and pipe models subject to various engineering conditions. First of all, a series of numerical simulations for the purpose of validating the efficiency of FSI solution approach (ANSYS MFX) has been performed. The comparison between the simulation and the experimental data shows that the present FSI solution method is capable of giving acceptable estimation to VIV problems. As a meaningful application to engineering problems, some tentative simulation cases which are difficult to carry out in experiment, such as a flexible pipe with internal flow and multi-assembled pipes, have been successfully carried out. The coupling mechanism between vortex shedding and the VIV has been well interpreted.

  • PDF

Mechanism of ovalling vibrations of cylindrical shells in cross flow

  • Uematsu, Yasushi;Tsujiguchi, Noboru;Yamada, Motohiko
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.85-100
    • /
    • 2001
  • The mechanism of wind-induced ovalling vibrations of cylindrical shells is numerically investigated by using a vortex method. The subject of this paper is limited to a two-dimensional structure in the subcritical regime. The aerodynamic stability of the ovalling vibrations in the second to fourth circumferential modes is discussed, based on the results of a forced-vibration test. In the analysis, two modal configurations are considered; one is symmetric and the other is anti-symmetric with respect to a diameter parallel to the flow direction. The unsteady pressures acting on a vibrating cylinder are simulated and the work done by them for one cycle of a harmonic motion is computed. The effects of a splitter plate on the flow around the cylinder as well as on the aerodynamic stability of the ovalling vibrations are also discussed. The consideration on the mechanism of ovalling vibrations is verified by the results of a free-vibration test.