• Title/Summary/Keyword: Forced Motion

Search Result 231, Processing Time 0.028 seconds

Relationship between Thoracic Kyphosis and Selected Cardiopulmonary Parameters and Respiratory Symptoms of Patients with Chronic Obstructive Pulmonary Disease and Asthma

  • Aweto, Happiness Anulika;Adodo, Rachel Ilojegbe
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2021
  • Background: Patients with advanced asthma and chronic obstructive pulmonary disease (COPD) have postural deviations such as thoracic hyperkyphosis, forward shoulder posture (FSP) due to an increase in head and cervical protraction, reduced shoulder range of motion and a corresponding increase in scapula elevation and upward rotation. Unlike congenital vertebral kyphosis that are permanent and rigid deformities with bony and other structural deformations which cause respiratory impairment, these deformities in these patients may be more flexible. Since the thoracic hyperkyphosis has been implicated as having adverse health consequences it is necessary to evaluated the relationship between thoracic kyphosis and cardiopulmonary functions of patients with COPD and asthma. Methods: It was a cross-sectional analytical study. Eighty-four eligible patients with COPD and asthma were recruited from the Respiratory Unit, Department of Medicine, Lagos University Teaching Hospital (LUTH), and basic anthropometric parameters, pulmonary parameters, cardiovascular parameters, thoracic kyphosis (Cobb) angle and presence of respiratory symptoms of participants were assessed. Data was analyzed using SPSS version 20. Results: There was no significant correlation between the thoracic kyphosis and selected pulmonary parameters (Forced Expiratory Volume in one second (FEV1, p=0.36), Forced Vital Capacity (FVC, p=0.95), Peak Expiratory Flow Rate (PEFR, p=0.16), Thoracic expansion (TE, p=0.27)/cardiovascular parameters (Systolic Blood Pressure (SBP, p=0.108), Diastolic Blood Pressure (DBP, p=0.17) and Pulse Rate (PR, p=0.93) as well as the respiratory symptoms (SGRQ scores, p=0.11) in all subjects. Conclusion: There was no relationship between thoracic kyphosis and selected pulmonary/cardiovascular parameters as well as respiratory symptoms in patients with COPD and asthma.

The Effects of Sitting in a Crossed Legs Posture on the Vertebral Angle, Chest Wall Mobility, Pulmonary Function, and Respiratory Muscle Activity: A Preliminary Study

  • Ahn, Hee-Eun;Yoon, Tae-Lim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.13-20
    • /
    • 2019
  • PURPOSE: Sitting with crossed legs may have an effect on maintaining a healthy body posture and proper functioning of the respiratory system. Thus, this study's objective was to identify whether or not sitting with crossed legs affects the vertebral angle, chest wall mobility, the pulmonary function, and the activity of the respiratory muscles. METHODS: Thirty healthy subjects were recruited for this study (16 males and 14 females). The vertebral angle, chest wall mobility, pulmonary function, and the activity of the respiratory muscle were measured while the subjects sat in the correct posture and these factors were again measured with the subjects seated with their legs crossed. Three-dimensional motion analysis was used to determine the trunk and lumbar vertebral angles. Surface electromyography was employed to measure the sternocleidomastoid, the rectus abdominis, and the external and internal oblique abdominis muscles. A tapeline was utilized to evaluate the subjects' chest wall mobility. Spirometry was assessed to determine the forced vital capacity and forced expiratory volume in one second. Paired t-tests were then performed (p<.05). RESULTS: There were significant differences in the trunk and lumbar flexion angles, the chest wall mobility, the activity of the right external oblique muscle, and the left internal oblique abdominis muscle. However, the difference in pulmonary function did not reach statistical significance. CONCLUSION: A crossed leg posture caused slight thoracic extension and lumbar flexion, which may lead to a decrease of the chest wall mobility and also to an imbalance of the abdominal muscles. Therefore, sitting with a crossed leg posture should be avoided. Yet a crossed leg posture did not have any clinical effect on the pulmonary function of healthy people. It may be necessary to study the effects of sitting with crossed legs over an extended period of time for patients suffering with impaired respiratory function.

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Recognition of Natural Hand Gesture by Using HMM (HMM을 이용한 자연스러운 손동작 인식)

  • Kim, A-Ram;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.639-645
    • /
    • 2012
  • In this paper, we propose a method that gives motion command to a mobile robot to recognize human being's hand gesture. Former way of the robot-controlling system with the movement of hand used several kinds of pre-arranged gesture, therefore the ordering motion was unnatural. Also it forced people to study the pre-arranged gesture, making it more inconvenient. To solve this problem, there are many researches going on trying to figure out another way to make the machine to recognize the movement of the hand. In this paper, we used third-dimensional camera to obtain the color and depth data, which can be used to search the human hand and recognize its movement based on it. We used HMM method to make the proposed system to perceive the movement, then the observed data transfers to the robot making it to move at the direction where we want it to be.

Effects of Combined Cervical Stabilization and Stretching Exercises on Craniovertebral Angle, Respiration, Disability, and Range of Motion in Office Workers with Forward Head Posture : A Randomized Control Trial

  • Kim, Kyung;Kang, Na-Yeon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.13-25
    • /
    • 2022
  • Purpose : The purpose of this study was to investigate the effects of combined cervical stabilization exercise (CSE) and stretching exercise (SE) on office workers with forward head posture (FHP). Methods : A total of 32 office workers with forward head posture were randomly assigned to experimental (n=16) and control (n=16) groups. The experimental group underwent combined CSE and SE, and the control group underwent cervical self-myofascial release and SE. Both groups performed exercises for 40 min per day, thrice per week for a total of 6 weeks. Craniovertebral angle (CVA), respiration, disability, and joint range of motion (ROM) before and 6 weeks after intervention were measured and compared. Results : There was no significant between-group difference in the general characteristics (p>.05). The intra-group comparison showed significant differences in the visual analog scale (VAS) and neck disability index (NDI) of both groups post-intervention (p<.05). CVA and forced expiratory volume in 1 seconds (FEV1) were significantly improved post-intervention in the experimental group only (p<.05). In the experimental group, all ROM variables were significantly improved post-intervention. In contrast, in the control group, all ROM variables improved significantly post-intervention, except for extension (p<.05). The inter-group comparison showed significant differences in NDI, left lateral flexion, right lateral flexion, and left rotation between the two groups (p<.05). Conclusion : The combination of CSE and SE, which stabilizes the cervical spine, had positive effects on cranial rotation angle, respiration, disability, and joint ROM in office workers with forward head posture. Therefore, the combination of the two exercises may be an effective option to reduce symptoms and prevent postural problems in office workers with FHP.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF