• Title/Summary/Keyword: Forced

Search Result 3,521, Processing Time 0.05 seconds

Effect of Slowly Forced Expiration on Abdominal Muscle Activity During Cross Knee Curl-Up Exercise

  • Yoon, Tae-Lim;Kim, Ki-Song
    • Physical Therapy Korea
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • Cross knee curl-up is an ideal variation of abdominal curl up exercise to strengthen abdominal musculature without excessive lumbar flexion which can increase the loads on the disc and ligaments. In addition, slowly forced expiration can facilitate the activation of the abdominal musculature. The purpose of this study was to determine the effects of slowly forced expiration on activity of abdominal muscles, such as rectus abdominis (RA), external oblique (EO), and transverse abdominis/internal oblique (TrA/IO), while cross knee curl-up. Eleven young and healthy subjects (6 males and 5 females) participated. All subjects performed the cross knee curl-up slowly forced expiration and natural breathing. Paired t-test was performed in normalized electromyogram (EMG) muscle activity of the bilateral RA, EO, and TrA/IO to compare the differences between the cross curl-up with slowly forced expiration and natural breathing. Statistical significance was set at .05. There were no significant differences in normalized EMG muscle activity of the bilateral RA, EO, and TrA/IO between the cross curl-up with slowly forced expiration and natural breathing. The finding of this study designates that slowly forced expiration does not induce increasing activity of abdominal muscle in cross knee curl-up; hence, learning step of breathing control might not be necessary to strengthen abdominal muscle in cross knee curl-up.

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

G system with forced and scheduled outages

  • Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.164-176
    • /
    • 1991
  • This paper considers the model of a k-out-of-n :G system with non-identical components which are subject to both forced and planned outages. For the forced outages, it assumes that there are the independent and common-cause outage events causing component failures. Then, the objective is to derive the upper and lower bounds on the mean operating time between system failures in the ample-server model. In addtion, the mean system failure times are also considered.

  • PDF

Extraction of bridge flutter derivatives by a forced excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.538-544
    • /
    • 2009
  • A vibration excitation system was designed and built of forced vibration experiments for using stepping motor and load cell. The identified flutter derivatives of the thin-plate acrylic model were very close to the analytical results of the idealized plate presented by Theodorsen. Five types of sectional models were tested in the wind tunnel using the proposed forced vibration method. To investigate the frequency, amplitude and angle of attack effects on flutter derivatives.

  • PDF

Forced Vibration of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Hur, Kwan-Do
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.679-680
    • /
    • 2011
  • The Forced vibration characteristics of elastically restrained pipe conveying fluid with the attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effect of attached mass and spring constant on forced vibration of pipe system is studied. Also, the critical flow velocities and stability maps of the valve-pipe system are obtained as each parameters.

  • PDF

Analysis of excreta bacterial community after forced molting in aged laying hens

  • Han, Gi Ppeum;Lee, Kyu-Chan;Kang, Hwan Ku;Oh, Han Na;Sul, Woo Jun;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1715-1724
    • /
    • 2019
  • Objective: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. Methods: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. Results: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in premolting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. Conclusion: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.

System Identification of Real-Scale Structures Using Forced Vibration Test (실물크기 구조물의 강제진동 실험을 통한 시스템 식별)

  • Youn, Kyung-Jo;Lee, Sang-Hyun;Park, Eun-Churn;Yu, Eun-Jong;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.195-200
    • /
    • 2007
  • System identification of real-scale structure is performed using forced vibration test. There exist various techniques available for identifying the dynamic characteristis of structures using dynamic and static measurements. In this study, The finite element(FE) model of the structure is analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. forced vibration tests showed that Hybrid Mass Damper induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.

  • PDF

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.765-777
    • /
    • 2020
  • In the context of classic conical shell formulation, nonlinear forced vibration analysis of truncated conical shells and annular plates made of multi-scale epoxy/CNT/fiberglass composites has been presented. The composite material is reinforced by carbon nanotube (CNT) and also fiberglass for which the material properties are defined according to a 3D Mori-Tanaka micromechanical scheme. By utilizing the Jacobi elliptic functions, the frequency-deflection curves of truncated conical shells and annular plates related to their forced vibrations have been derived. The main focus is to study the influences of CNT amount, fiberglass volume, open angle, fiber angle, truncated distance and force magnitude on forced vibrational behaviors of multi-scale truncated conical shells and annular plates.

Forced Ventilation Method for Preventing Surface Condensation of Magazine of Igloo type in Summer (강제환기를 이용한 하절기 군 저장시설의 표면결로 방지에 관한 연구)

  • Park, Sun-Hyo;Yoon, Sung-Do;Sohn, Jang-Yeul
    • KIEAE Journal
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • In case of earth-covered storage, the condensation occurs on surface of wall and stores in summer with high humidity because of low temperature of constructional mass. Therefore, the preventive plans should be considered to protect stores from the damage by corrosion in earth-covered storages. This study aims to suggest the methods of forced ventilation by the air, to solve the problems of construction's surface condensation at the Magazine of igloo type which is similar to earth-covered storages. A fan was installed at the air outlet for exhaust gas to conduct forced ventilation. The surface and indoor temperature were measured, and then the influence of those on condensation was analyzed. The results of this research are follows; 1) Forced ventilation by a fan affects the rise in surface temperature of walls and stores. 2) The condensation on surface of walls and stores was reduced after operating a fan.