• Title/Summary/Keyword: Force simulation

Search Result 2,887, Processing Time 0.032 seconds

Deformation of Polymer Resist in NIL Process by Molecular Dynamic Simulation (분자동역학기법을 이용한 나노 임프린트 리소그래피 공정에서의 고분자 변형모사)

  • Woo, Young-Seok;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.337-342
    • /
    • 2007
  • In this study, molecular dynamics simulation of nano imprint lithography in which patterned stamp is pressed onto amorphous polyethylene(PE) surface are performed to study the behaviour of polymer. Force fields including bond, angle, torsion, and Lennard Jones potential are used to describe the inter-molecular and intra-molecular force of PE molecules and stamp, substrate. Periodic boundary condition is used in horizontal direction and canonical NVT ensemble is used to control the system temperature. As the simulation results, the behaviour of polymer is investigated during the imprinting process. The mechanism of polymer deformation is studied by means of inspecting the surface shape, volume, density, atom distribution. Deformation of the polymer resist was found for various of the stamp geometry and the alignment state of the polymer molecules.

  • PDF

Development of a Dynamic Analysis Program for Tracked Vehicles (궤도차량을 위한 동특성 해석 프로그램 개발)

  • 최윤상;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2002
  • A simulation program for vehicle dynamic analysis was developed. The Cartesisn coordinate system was used for translational motion and the Euler angle system was used for rotational motion. A three dimensional multi-wheeled vehicle model and equations of motion were derived. Also static equilibrium analysis was added for initial vehicle condition setting. The program user can describe the exact characteristics of suspension spring force and damping force in the user subroutine. A wheel-ground contact model which represents geometrical effect was developed. Two cases of simulation for 16 D.O.F. vehicle model were conducted to validate the developed program by comparing the simulation results with the experimental data.

A Comparison of the Direct Shear Test and Shear Simulation Based on the Discrete Element Method (직접전단시험과 이산요소법에 기반한 전단 시뮬레이션과의 비교)

  • Jung, Sung-Heon;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2020
  • An important factor of rough road modeling is analyzing the shear behavior properties of the rough road. These properties influence the drawbar pull of the tool when interacting with the soil used in agriculture. Furthermore, shear behavior properties are important because sinkage and shear stress are generated when wheels drive on rough roads. In this study, we performed a direct shear test to investigate the shear behavior properties of soils and compare with the direct shear simulation; shear force derived by the coupled analysis of discrete element method; and multi-body dynamics. Soil contact parameters were measured in a wheel and soil contact simulation followed by comparison of the simulated and experimentally measured shear force.

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

A Proposal of Spectrum COP Design for Effective Frequency Management in Air Force's Battlefields Environment (공군 전장 환경에서 효과적 주파수 관리를 위한 Spectrum COP 설계 제안)

  • Koo, Ja-Yeul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1033-1040
    • /
    • 2012
  • Recently, several researches are focused on the frequency sharing and the liberalization of frequency use for utilizing the limited frequency resources efficiently. In military, as Network Centric Warfare(NCW), which requires significant mutual operability of battle elements and real-time operation speed, has come to the fore front as an important aspect of modern warfare, the methods to manage limited frequency resources in wireless communications environment efficiently has been studied and utilized. In this paper, we propose a Spectrum COP(Common Operation Picture) design suitable for the battlefields of air force. To construct the Spectrum COP of Air Force, we analyze the requirements and design the frequency management system by using EA(Enterprise Architecture) Framework. The simulation results of the proposed design proved the effectiveness by using EADSIM(Extended Air Defense Simulation) of Air Force.

Structural identification based on incomplete measurements with iterative Kalman filter

  • Ding, Yong;Guo, Lina
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1037-1054
    • /
    • 2016
  • Structural parameter evaluation and external force estimation are two important parts of structural health monitoring. But the structural parameter identification with limited input information is still a challenging problem. A new simultaneous identification method in time domain is proposed in this study to identify the structural parameters and evaluate the external force. Each sampling point in the time history of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force evaluation the time domain measurements are divided into several windows. In each time window the structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be represented approximately by the linear combination of these orthogonal bases. Structural parameters and the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter (EKF) is augmented and selected as the mathematical tool for the implementation of state variable evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from the simulation studies indicate that the proposed method is capable of identifying the dynamic load and structural parameters fairly accurately. This method could also identify the time-variant and nonlinear structural parameter even with contaminated incomplete measurement.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

Modeling and Design of Impact Hammer Drill (충격햄머드릴의 기구해석 및 설계)

  • 박병규;김재환;백복현;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS (타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어)

  • Yim, Seongjin;Nam, Gi Hong;Lee, Ho Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

A Study on Modeling of Pneumatic System for an IDC Device (IDC장치에 대한 공압시스템의 모델링에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.11-17
    • /
    • 2015
  • An intelligent deburring control (IDC) device is used to control the constant force for a deburring tool mounted on the end-effector of a robotic arm. This device maintains a constant contact force between the deburring tool and the workpiece in order to provide a good deburring performance. In this paper, we build a mathematical model in Matlab/Simulink to estimate the force control mechanism of the pneumatic system for the IDC device. The Simulink blocks are built for each separate part and are linked into an integrated simulation system. Such a model also relies on the effects of the flow rate through the valve, air compressibility in the cylinder, and time delay in the pressure valve. The results of the simulation are compared to a simple experiment in which convenient math modeling is performed. These results are then used to optimize the mechanical design and to develop a force control algorithm for the pneumatic cylinder.