• 제목/요약/키워드: Force method

검색결과 8,471건 처리시간 0.042초

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

Timing Driven Placement using Force Directed Method and Optimal Interleaving Technique (포스 디렉티드 방법과 최적 인터리빙 기법을 이용한 타이밍 드리븐 배치)

  • Sung Young-Tae;Hur Sung-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제33권1_2호
    • /
    • pp.92-104
    • /
    • 2006
  • The proposed method for a force directed global placement algorithm exploits and extends techniques from two leading placers, Kraftwerk (& KraftwerkNC) and Mongrel. It combines the strengths of KraftwerkNC, force directed global placer, and Mongrel's ripple move technique which resolves cell overlaps effectively The proposed technique uses the force spreading technique used in Kraftwerk to optimize the ripple movement. While it is resolving the cell overlap and optimizing wire length physical net constraints are considered for timing. The experimental results obtained by the proposed approach shows significant improvement on wire length as well as on timing.

Pretension process control based on cable force observation values for prestressed space grid structures

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.739-753
    • /
    • 2010
  • Pointing to the design requirement of prestressed space grid structure being the target cable force, the pretension scheme decision analysis method is studied when there's great difference between structural actual state and the analytical model. Based on recursive formulation of cable forces, the simulative recursive system for pretension process is established from the systematic viewpoint, including four kinds of parameters, i.e., system initial value (structural initial state), system input value (tensioning control force scheme), system state parameters (influence matrix of cable forces), system output value (pretension accomplishment). The system controllability depends on the system state parameters. Based on cable force observation values, the influence matrix for system state parameters can be calculated, making the system controllable. Next, the pretension scheme decision method based on cable force observation values can be formed on the basis of iterative calculation for recursive system. In this way, the tensioning control force scheme that can meet the design requirement when next cyclic supplemental tension finished is obtained. Engineering example analysis results show that the proposed method in this paper can reduce a lot of cyclic tensioning work and meanwhile the design requirement can be met.

Development of Tire Lateral Force Monitoring System Using SKFMEC (SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • Kim, Jun-Yeong;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제24권7호
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.

Rack Force Estimation Method using a Tire Mesh Model (TIRE MESH 모델을 활용한 랙추력 추정법 개발)

  • Kim, Minjun;Chang, Sehyun;Lee, Byungrim;Park, Youngdae;Cho, Hyunseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.

Measuring methods for friction coefficient of disc-pad through running test (실차 주행시험을 통한 디스크-패드 마찰계수 측정방법)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

A Study on the Optimal Design of Gas Spring for Vehicle (자동차용 GAS SPRING의 최적 설계에 관한 연구)

  • 김영범
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권11호
    • /
    • pp.39-45
    • /
    • 1998
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily opreated to open(extension process) or close (compression process) the doors because $N_2$ gas with high pressure and oil are charged in tube. Most of manufacturers are using the trial & error method in order to decide its specification(reaction force, damping force), which tends to waste time and money. Therefore, gas springs have been improved by properly changing the control pressure of $N_2$ Gas with its mounting location and weight to maximize its effect and to minimize its space. Although it has been researched on damping structure to minimize impact which is applied to vehicle when its back door is fully opened, the characteristics of damping structure are not known clearly. There(ore, this paper will not only clearly define the effect of important factors(open & close force)for gas springs through theoretical analysis but also provide optimum design specification through development of program to avoid traditional method of specification determination such as the trail It error method which is widely used in whole industries including automotive industry.

  • PDF

Development of pushing force measuring system for coke oven machines using telemetry method (비 접촉원격 토오크 측정 시스템 개발)

  • 전종학;허윤기;최일섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1778-1781
    • /
    • 1997
  • The coke oven plant on a steel works has not, in the past, been regarded as a prime user of modern instrument technology. The reason for this perception may be due to the fact that the basic design of the coke battery has been changed little over the years. The recording and analysis of oven pushing force on a routine basis is seen as a means of monitoring plant operation. A torque sensor is set up at the shaft of the rotor for measuring pushing force. Pushing force data which is communicated form torque sensor to staor by telemetry method are shown on MMI(Man-Machine Interface) screen and stored in the database automatically. Perhaps the most important feature is that is allows a problem oven to be identified at an early stage and for corrective action to be taken before it develops into a refusal to push. In this way the mechanical loads imposed on the battery structlure can be held to a necessary minimum, so helping to prolong its service life.

  • PDF

A Study on Contact Force Analysis of Fixed Outer-Ring Type Epicycloid Plate Gear for Cycloidal Speed Reducer with Friction Effect (외륜 고정형 에피 사이클로이드 감속기의 작용력 해석법에 관한 연구)

  • Chang S.W.;Hong J.P.;Shin J.H.;Kwon S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1652-1655
    • /
    • 2005
  • All teeth on the cycloidal plate gear exist in the contact motion with rollers and the forces are interacted between roller gears with cycloidal plate gears. So, the contact forces and friction forces must be required to improve the accuracy in design procedures of cycloidal speed reducers. This paper presents a force analysis considered the friction effect approach derived by static force equilibrium condition, geometrical adaptation, instant velocity center method and relative velocity method. Finally, the paper develops CAD-program for the construction of the design automation using the proposed method.

  • PDF

A Study on a Novel Method for Electromagnetic Force Computation based on Continuum Design Sensitivity Analysis (연속체 설계 민감도해석을 이용한 새로운 전자기력 계산방법에 관한 연구)

  • Kim Dong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제54권6호
    • /
    • pp.287-293
    • /
    • 2005
  • Equations have been derived for computing electromagnetic forces by using the Continuum Design Sensitivity Analysis based on the Continuum Mechanics and the Virtual Work Principle. The resultant expressions have similar terms relating to the Korteweg-Holmholz force density, Maxwell Stress Tensor and Magnetic Charge Method but numerical implementation of the proposed scheme leads to efficient calculation and improved accuracy. In addition, the method can be easily applied to computing the magnetic force distribution as well as the global force. Results show the aforementioned advantages in comparison with the conventional methods.