• Title/Summary/Keyword: Force Prediction

Search Result 913, Processing Time 0.025 seconds

A Study on the Hydrodynamic Interaction Forces between Ship and Bank Wall in the Proximity of Bank (측벽부근을 항해하는 선박과 측벽간의 상호 간섭력에 관한 연구)

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • It is well known that the hydrodynamic interaction forces between ship and bank wall affect ship manoeuvring motions. In this paper, the calculation method based on the slender body theory for estimation of the hydrodynamic interaction forces between ship and bank wall is investigated. The numerical simulations on hydrodynamic interaction force acting on a ship in the proximity of bank wall are carried out by using this theoretical method. The theoretical method used in this paper will be useful for practical prediction of ship manoeuvrability at the initial stage of design, for discussion of marine traffic control system and for automatic control system of ship in confined waterways.

Prediction of Thoracic Injury of Older Occupant from Belt Loading (벨트 하중에 따른 고령운전자의 흉곽 상해 예측)

  • Han, In-Seok;Kim, Young-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.799-806
    • /
    • 2009
  • Thoracic injury from restraint loading is the principle causative factor of death, which was shown to be particularly significant for older drivers. To characterize thoracic response to belt loading of older drivers, detailed finite element models of the adult and aged thorax were developed. The geometry of the 50th percentile adult male was chosen for the adult FE model. The thoracic FE model was validated against data obtained from results of PMHS pendulum impact tests. The quantified patterns of age-related shape and well-established material changes were applied to the adult model to develop the aged model. Belt force and chest deflection were applied to the developed two types of models. Rib and clavicle fracture risk obviously increased in the aged model. This finding showed that larger rib angle and reduced material properties of the ribcage produced more higher risk of injury in the older driver.

A Study on the Rotordynamic Stability of Turbo Pump Unit

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Woong;Yoo, Woo-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A turbo pump unit provides high pressure oxygen and fuel in a space shuttle main engine (SSME). This paper focused on rotordynamics, investigating its characteristics based on a numerical simulation of turbo pump finite element model. Speeds up to 50,000 rpm are considered, as well as the special problems related to elastic-ring, seal hydrodynamic force, shroud force and clearance-excitation farce. The rotordynamic prediction shows that the elastic-ring which is inserted between the casing and the outer race of ball bearing allows far an acceptable separate margin of first critical speed. Additionally, the results show that the floating ring seal, which have a peculiar ring, adds substantial stiffness and damping to the system as well as exhibits superior performance in terms of rotordynamic stability of system compared to the plain seal.

Prediction of combustion field in granular propellant with moving boundary (이동경계면을 갖는 연소실내에서의 입자상의 고체연료 연소장 예측)

  • 조한창;윤재건;신현동;김종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2385-2394
    • /
    • 1992
  • Granular solid propellants having energy and fast burning rate produce great thrusts within extremely short time intervals. Thus numerical researchs prevailed rather than experimental. Using a 2-phase fluid dynamics model among 1-dimensional 2-phase models, a numerical program was set up to describe reacting flow fields, moving boundary with oscillating pressure waves and constitutive laws research. It deserves special emphasis that correlations of convective heat transfer coefficient and viscous drag force among constitutive laws are tested and discussed because slight variations of their constants make a large influence on their results. In this calculations, some of correlations make the large difference in results. Therefore constitutive laws for convective heat transfer coefficient and viscous drag force need more considerations with experiments.

A Study on the Dynamic Behavior of Eddy Current Braking System for Korean High Speed Train (고속전철의 와전류 제동장치 동적 거동특성 연구)

  • 박찬경;최강윤;현승호;곽수태
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.147-154
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for Prediction of the dynamic behavior of an eddy current braking system.

  • PDF

Development of Roll Stability Control of Commercial Vehicles with Environment Information (환경 정보를 이용한 상용차량 전복 방지 알고리즘 개발)

  • Park, Dongwoo;Her, Hyundong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • When it comes to commercial vehicles, their unique characteristics - center of gravity, size, weight distribution - make them particularly vulnerable to rollover. On top of that, conventional heavy vehicle brake exhibits longer actuation delays caused in part by long air lines from brake pedal to tires. This paper describes rollover prevention algorithm that copes with the characteristics of commercial vehicles. In regard of compensating for high actuating delay, predicted rollover index with short preview time has been designed. Moreover, predicted rollover index with longer preview time has been calculated by using road curvature information based on environment information. When rollover index becomes larger than specific threshold value, desired braking force is calculated in order to decrease the index. At the same time, braking force is distributed to each tire to make yaw rate track desired value.

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Prediction of Detent Force on Linear Synchronous Motor by means of Moving Least Square Method (이동최소자승법을 이용한 선형동기전동기의 디텐트력 특성 예측)

  • Kim, Young-Kyoun;Kim, Sung-Il;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.994-996
    • /
    • 2003
  • The Response Surface Methodology is frequently used for building an approximation model. However, its approximation errors often occur in engineering problem, because of the use of the Least Square Method. Therefore, this paper introduces the Moving Least Square Method to obtain the more accurate Response Surface Model, and then the detent force of a Permanent Magnet Linear Synchronous Motor is applied to verify the accuracy of the introduced method.

  • PDF

Forming Analysis of L-type Bending of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 L형 굽힘 성형해석)

  • Chung, W.J.;Kim, J.H.;Lim, S.J.;Yoo, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A condensed model is proposed for the simulation of forming of sandwich sheet with pyramid core. A corresponding finite element analysis for L-type bending is carried out to prove the accuracy and the effectiveness. Simulation results are compared with those of experiment. Deformation shape and post-buckling behavior by simulation are in good agreement with those of experiment for the considerable range of deformation. From the comparison of force-displacement curve, it is shown that the proposed model shows good prediction of the forming force compared to the experiment. Thus, the effectiveness of the proposed method is sufficiently demonstrated.

  • PDF

A Study on the Mechanics of Shear Spinning of Cones

  • Kim Jae-Hun;Park Jun-Hong;Kim Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.806-818
    • /
    • 2006
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of working force are calculated by the newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$ becomes $\kappa$, yield limit in pure shear, in the deformation zone. The tangential forces are first calculated and the feed forces and the normal forces are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results.