• Title/Summary/Keyword: Force Prediction

검색결과 906건 처리시간 0.035초

S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측 (Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation)

  • 박대균;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.

A SENSITIVITY ANALYSIS OF THE KEY PARAMETERS FOR THE PREDICTION OF THE PRESTRESS FORCE ON BONDED TENDONS

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.319-328
    • /
    • 2010
  • Bonded tendons have been used in reactor buildings at some operating nuclear power plants in Korea. Assessing prestress force on these bonded tendons has become an important pending problem in efforts to assure continued operation beyond their design life. The System Identification (SI) technique was thus developed to improve upon the existing indirect assessment technique for bonded tendons. As a first step, this study analyzed the sensitivity of the key parameters to prestress force, and then determined the optimal parameters for the SI technique. A total of six scaled post-tensioned concrete beams with bonded tendons were manufactured. In order to investigate the correlation of the natural frequency and the displacement to prestress force, an impact test, a Single Input Multiple Output (SIMO) sine sweep test, and a bending test using an optical fiber sensor and compact displacement transducer were carried out. These tests found that both the natural frequency and the displacement show a good correlation with prestress force and that both parameters are available for the SI technique to predict prestress force. However, displacements by the optical fiber sensor and compact displacement transducer were shown to be more sensitive than the natural frequency to prestress force. Such displacements are more useful than the natural frequency as an input parameter for the SI technique.

합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측 (Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models)

  • 서장훈;윤현식;김민일
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

실시간 압연하중 및 압연동력 예측 모델의 개선 (New FE On-line Model)

  • 김영환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.52-55
    • /
    • 2000
  • Investigated via a series of finite element process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the strip in hot strip rolling. Then on the basis of these parameters an on-line model is derived for the precise prediction of roll and roll power. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

밀링 가공 시 채터 진동 예측의 해석적 방법 (Analytical Prediction of Chatter Vibration in Milling Process)

  • 정낙신;양민양
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.210-217
    • /
    • 2009
  • This paper presents the analytical prediction of stability lobes in milling. The stability lobes are obtained by measuring the frequency response function (FRF) of a machining center at the cutting point of the end mill cutter, identifying cutting constants, and approximating cutting force coefficients. The stability lobes are experimentally verified through cutting tests.

열연 조압연공정에 있어서의 평균온도 예측모델 개발 (Development of Prediction Model for Average Temperature in the Roughing Mill)

  • 문창호;박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.368-377
    • /
    • 2004
  • A mathematical model was developed for the prediction of the average temperature and RDT(RM Delivery temperature) in a roughing mill. The model consisted of three parts as follows (1) The intermediate numerical model calculated the deformation and heat transfer phenomena in the rolling: region by steady state FEM and the heat transfer phenomena in the interpass region by unsteady state FEM (2) The Off-line prediction model was derived from non-linear regression analysis based on the results of intermediate numerical model considering the various rolling conditions, (3) Using the heat flux in rolling region, temperature profile along thickness direction was calculated. For validation of the presented model, the rolling force per pass and RDT measued in on-line process was compared with those of model and the results showed close agreement with the existing data. In order to demonstrate the effectiveness of the proposed model, the various rolling conditions was tested.

  • PDF

State-of-the-art of Pier Scour Prediction for Design Application

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kang, Kwan-Won
    • Korean Journal of Hydrosciences
    • /
    • 제2권
    • /
    • pp.39-59
    • /
    • 1991
  • Scour at bridge pier is a complicated three-dimensional problem involving interaction of fluld force on movable aid nonuniformily distributed sand grains. Although several analytical solution approaches, experimental research and field investigations for scout at piers have been conducted, no comprehensive and universally acceptable solution is so far available. Even though many methods and equations for predicting scour at piers are available in the literature, hydraulic and/or bridge design engineers are often at a loss over which method or equation is applicable for the specific bridge sites. To provide better understanding about scour phenomena and better predicting of scour at piers, intensive research is conducted through comprehensive review of published literature. Based on the research the state-of-the-art of pier scour prediction for design application is provided as a design guide for practicing engineers in this field. Recommendations for applying aggradation and degradation, contraction scour, and local scour prediction methods or equations are suggested. It is hoped that this paper may provide good information for the prediction of scour at piers.

  • PDF

Roll 수명예측모델에 의한 열연작업롤 진단 (Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process)

  • 배용환;장삼규;이석희
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF