• Title/Summary/Keyword: Force Prediction

Search Result 906, Processing Time 0.031 seconds

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

The Aerodynamic Analysis of Pantograph of the Next Generation High Speed Train (차세대 고속철도 판토그래프의 공력특성 해석)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Yoon, S.H.;Kwon, H.B.;Park, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.362-367
    • /
    • 2011
  • The aerodynamic performance of the pantograph of the next generation high sped train is analyzed. The calculation of the flow around pantograph is carried cut by FLUENT; by the steady state flow calculation with ${\kappa}-{\omega}$ SST turbulence model, the lift force of the pantograph is computed. For the verification of the numerical schemes am grid systems, flow calculations are performed with the pantograph shape which was used at the experiments performed at Railway Technical Research Institute (RTRI) in Japan. Then, the difference of lift force between numerical am experimental results is about 10%. Therefore, selected numerical schemes and the current grid system is adequate for the analysis am prediction of the aerodynamic performance of panthograph system. Based on these numerical schemes am grid system, the flow around pantograph of the next generation high sped train is calculated and the lift force of the pantograph is predicted; the lift force of the pantograph is about 146N.

  • PDF

Experimental Study of Cutting force and Surface Roughness Prediction in MQL Tooling of Al 6061 (Al 6061 MQL 선삭가공에서 절삭력과 표면거칠기 예측에 관한 실험적 연구)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.159-167
    • /
    • 2008
  • Cooling lubricants are used in machining operations in order to reduce friction at the tool-chip and tool-workpiece interfaces, cool both chip and tool, and remove chip. Furthermore, they influence a strong effect on the shearing mechanisms and, consequently, on the machined surface quality and tool wear. However, several researchers state that the costs related to cutting fluids is frequently higher than those related to cutting tools. Moreover, the cooling lubricants cause an increase in both worker's health and social problems related to their use and correct disposal. Therefore, many researchers have focused on the environmentally conscious machining technologies. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. In this paper, an experimental model to obtain the optimal cutting conditions in MQL turning was suggested, and the effects of cutting conditions on surface roughness and cutting force were analyzed. For these purposes, FFD (Fractional Factorial Design) and RSM (Response Surface Methods) were used for the experiment. Cutting force and surface roughness with different cutting conditions were measured through the external cylindrical turning of Al 6061 based on the experiment plan. The measured data were analyzed by regression analysis and verification experiments with random conditions were conducted to confirm the suggested experimental model.

A Study on the Prediction of the Form of Chips using Cutting Forces (절삭력을 이용한 칩형태의 예측에 관한 연구)

  • Lee, Sang-Jun;Choi, Man-Seong;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.40-49
    • /
    • 1988
  • The chip control problem is one of the important subjects to be studied in the metal cutting process. Especially, an important practical problem concerns the form of chips pro- duced in machining since this has important implications relative to : 1. Personal safety. 2. Possible damage to equipment and product. 3. Handling and disposal of swarf after machining. 4. Cutting forces, temperatures, and tool life. However, a dependable way to predict the form of chips in a wide range of cutting conditions has not been established satisfactorily. In this paper, the relationship between the form of chips and the ratios of cutting forces were studied experimentally. According to what the experiments have been carried out in the turning process the main results can be summarized as follows : 1. By use of the multiple linear regression model, emperical formulas which are suitable to wide ranges of cutting conditions with accuracy were obtained satisfactorily. 2. The correlations between the form of chips based upon the classification by Henriksen and the ratios of cutting forces, namely (feeding force/thrust force), (principal force/feeding force) were determined. 3. Using above results, the algorithms which predict the form of chips were constituted. With these algorithms, the form of chips in a wide range of cutting of cutting conditions can be predicted.

  • PDF

The development of wheel-rail contact module for the next generation express train (차세대 고속철 해석을 위한 훨레일 모듈 개발)

  • Yoon, Ji-Won;Park, Tae-Won;Lee, Soo-Ho;Cho, Jae-Ik
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.225-230
    • /
    • 2009
  • From the view point of railway vehicle dynamics, the interaction between wheel and rail have an huge effect on the behavior of the vehicle. This phenomenon is an unique motion, only for railway vehicles. Furthermore, close investigation of the backgrounds of the interaction is the key to estimate the dynamic behavior of the vehicle, successfully. To evaluate the model including flexible bodies such as car body and catenary system of the next generation express train, it is necessary to develop proper dynamic solver including a wheel rail contact module. In this study, wheel-rail contact module is developed using the general purpose dynamic solver. First of all, the procedure for calculation of the wheel-rail contact force has been established. Generally, yaw angle of the wheelset is ignored. Sets of information are summarized as tables and splined for further uses. With this information, normal force and creep coefficient can be extracted and used for FASTSIM algorithm, which has been shown good reliability over years. Normal force and longitudinal, lateral force at the contact surface are also calculated. Those data are verified by commercial railway simulation program 'VAMPIRE'. This procedure and program can offer a basic process for estimation of the dynamic behavior and wear of the wheel-rail system, even while running on the curved rail. Finally, multi-dimensional inspection tool will be developed including the prediction of the derailment.

  • PDF

Comparative Study on Rolling Characteristics of Hexagonal Bar with Special Alloy for Advancing Drawing System (인발성형 시스템 고도화를 위한 특수합금 육각봉의 압연특성 비교 해석 연구)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.96-102
    • /
    • 2021
  • Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products. Numerical analysis was conducted to obtain data for designing a new drawing system. This study aims to predict the rolling force of the new drawing system compared to that of the established drawing system. The rolling force of the new drawing system was predicted using numerical analysis by assuming that it is in proportion to deformation. The rolling forces of Mo, Ti, and W were approximately 1.4, 0.5, and 2.5 times those of SUS. Because the values of ultimate strength of special alloys were more close to numerical analysis, the values of ultimate strength could be used to predict the rolling force of the new drawing system without numerical analysis in field.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.

Position Control of Linear Motor-based Container Transfer System using DR-FNNs (DR-FNNs를 이용한 리니어 모터 기반 컨테이너 이송시스템의 위치제어)

  • Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwan-Soon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.541-548
    • /
    • 2004
  • In the maritime container terminal. LMCTS (Linear Motor-based Container Transfer System) is horizontal transfer system for the yard automation, which In., been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc. LMCTS is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the softcomputing method of a multi-step prediction control for LMCTS using DR- FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi step prediction Consequently, the system has an ability to adapt for external disturbance, detent force, force ripple, and sudden changes by loading and unloading the container.

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.

Prediction of Residual Layer Thickness of Large-area UV Imprinting Process (대면적 UV 임프린팅 공정에서 잔류층 두께 예측)

  • Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.