• Title/Summary/Keyword: Force Operation View

Search Result 31, Processing Time 0.021 seconds

A Study on the Integrated Capability Framework for Capability Based Force Structure (능력기반전력구조를 위한 통합능력프레임워크 연구)

  • Park, Sang-Gun;Lee, Tae-Gong;Lim, Nam-Kyu;Son, Hyun-Sik;Kim, Han-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.39-52
    • /
    • 2010
  • DoD makes efforts to develop Capability-Based Force Structure through NCW and requirements. MND makes efforts to develop capability based force development and management for dynamic security environment and wartime command and control, however it seems to be very difficult to develop Capability-Based Force Structure without the concept and development method of integrated capability. The purpose of this paper is to make "An Integrated Capability Framework of Capability Based Force Structure" which presents integral capability of Enterprise. This framework contains the concept of force operation and force development view based on defense force life cycle.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Tele-operation of a Mobile Robot Using Force Reflection Joystick with Single Hall Sensor (단일 홀센서 힘반영 조이스틱을 이용한 모바일 로봇 원격제어)

  • Lee, Jang-Myung;Jeon, Chan-Sung;Cho, Seung-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • Though the final goal of mobile robot navigation is to be autonomous, operators' intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas cannot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. A collision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.

  • PDF

Fundamental Study on Mechanism of Strip Pinching in Rolling (압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • Lee Chang Woo;Shin Kee Hyun;Hong Wan Kee;Jung Dong Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.

Fundamental Study on Pinching Mechanism in Hot Strip Mill (사상 압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • 신기현;권순오;이창우;안영세;정동택;홍완기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1091-1096
    • /
    • 2003
  • It is very important to find out causes of strip pinching for the high quality of products and for the stable operation of hot roiling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in hot rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Tongue tail) across the CMD were found to provide possible major causes of strip pinching.

  • PDF

Optimal Allocation Model of Anti-Artillery Radar by Using ArcGIS and its Specifications (지형공간정보와 제원 특성을 적용한 대포병레이더 최적배치모형)

  • Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.74-83
    • /
    • 2018
  • It is very crucial activities that Korean army have to detect and recognize enemy's locations and types of weapon of their artillery firstly for effective operation of friendly force's artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar's roles are very important for minimizing friendly force's damage because arbiters have to recognize a several enemy's artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander's intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar's performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation's solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar's operations and assisting a quick decision for commander finally.

Simulation of the Operation of the Control Element Drive Mechanism (제어봉구동장치의 동작 시뮬레이션)

  • Kim, Hyun-Min;Kim, In-Yong;Kim, Il-Kon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.468-473
    • /
    • 2004
  • The magnetic jack type Control Element Drive Mechanism (CEDM) had been developed and verified through electromechanical testing including the testing of the magnetic force required to lift the control element assembly. It would become inefficient in view of cost and time for parametric studies to be performed by test to improve the CEDM system. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM in order to improve the CEDM design efficiently. In this paper it is presented that the electromagnetic analysis using a 2D axisymmetric FEM model has been carried out to simulate the operation of the latch magnet of the CEDM to generate a current trace for latch coil. The results show the calculated current trace is very similar to the real current trace taken from the CEDM.

  • PDF

From the point of view of ground operations principle, Chosin Link-up operation discussion of the US 1st Marine Division (지상작전의 원칙 측면에서 미 제1해병사단의 장진호 연결작전 고찰)

  • Kim, Kyu-Bin;Choi, Yong-Yoel
    • Journal of National Security and Military Science
    • /
    • s.13
    • /
    • pp.1-41
    • /
    • 2016
  • US 8th Army in the attack on the Western Front was a situation that was frustrated by the 13th Corps Communist army. To this time support this, goals that have been granted to the US 1st Marine Division that initiated the attack in Mupyonri direction, lack the potential to achieve was not decisive. It was a operation specific erroneous judgment that occurred because there was no one accurately grasp the battlefield of the situation the wrong UN Forces Command. Tactical victory can be to maximize the operation outcomes. However, there is no possible failure of the operation is to expand the tactical success. This is because the failure of the operation, because directly linked to the success or failure of the war. Tactical victory can be to maximize the operation outcomes. However, operation specific failure is not it possible to expand the tactical victory. Therefore tactical success of the US 1st Marine Division, can not compensate for operation specific failure of the United Nations Forces Command. However, Chinese Communist Army 9th Corps is obsessed only victory of tactics to annihilate the US 1st Marine Division, by being fixation to the Chosin whole area, it was not possible to run a operational operation. Therefore tactical success df the US 1st Marine Division, Chinese Communist Army 9th Corps is to extinguish the ability to increase the number of the 13th Corps of the Western Front, 8th Army US have contributed to have escaped the crisis. In addition, the US 10th Corps while maintaining the combat force, by an important role to withdraw through the sea, was able to complement the misjudgment of the operation.

  • PDF

Lifetime prediction of bearings in on-board starter generator

  • Zieja, Mariusz;Tomaszewska, Justyna;Woch, Marta;Michalski, Mariusz
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.289-302
    • /
    • 2021
  • Ensuring flight safety for passengers as well as crew is the most important aspect of modern aviation, and in order to achieve this, it is necessary to be able to forecast the durability of individual components. The present contribution illustrates the results of a computational analysis to determine the possibility of analysing the prediction of bearing durability in on-board rotating equipment from the point of view of thermal fatigue.In this study, a method developed at the Air Force Institute of Technology was used for analysis, which allowed to determine the bearing durability from the flight altitude profile. Two aircraft have been chosen for analysis - a military M-28 and a civilian Embraer. As a result of the analysis were obtained: the bearing durability in on-board rotating devices, average operation time between failures, as well as failure rate. In conclusion, the practical applicability of this approach is demonstrated by the fact that even with a limited number of flight parameters, it is possible to estimate bearing durability and increase flight safety by regular inspections.

On the study of methodology of dynamic analysis for systematic designing Impact Wrench (Impact Wrench의 체계적인 설계를 위한 동역학 해석 방법에 대한 고찰)

  • Lee, Jaemin;Ko, Dong-Shin;Chun, Hyung-Hwan;Hur, Deog-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.373-378
    • /
    • 2013
  • Impact wrench has a sophisticated structure to implement various pre-designed mechanisms with specific functions. In the structure of impact wrench, the gear box has an important role to generate impacting force of anvil from actuating torque. Since, it requires to design systematically the gear box for accurate mechanism of operation and transferring motions. In this paper, a methodology of dynamic analysis, which is useful to design mechanical system, is proposed and applied to impact wrench, sequentially. At first, the way to perform dynamic analysis for design, which is progressed from component to assembled system, is introduced. Secondly, the proposed methodology is applied to designing impact wrench. Eventually, the results of parameter study with proposed methodology are applied to actual design for design optimization. And optimized-design is evaluated in the view of accurate operation and structural stability.

  • PDF