• Title/Summary/Keyword: Force Modelling

Search Result 231, Processing Time 0.024 seconds

Calculation of the Thrust of Linear Pulse Motor (리니어 펄스모터의 추력 산정)

  • Kim, Dong-Hee;Bae, Dong-Kwan;Kim, Kwang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.3-7
    • /
    • 2003
  • Usually, the thrust is calculated by magnetic equivalent circuit modelling method for thrust capacity and accuracy progress of position control about a Linear Pulse Motor of which position precision is good and open-loop control is possible within Linear Motors. Analytical thrust deviation exists to calculating magnetic flux density by using Permeance Modelling Method, Finite Element Method, and Velocity Electric Motive Force Method. For calculating accuracy thrust by using these every method, the thrust is calculated and compared by Lorentz Force Method, Magnetic Coenergy Method, and Maxwell correspondence force Method. And that becomes important factor at the comparison of each capacity and parameter of Motor. So this study wants to compare and analyze measurement data and calculating data of the static force of Linear Pulse Motor. and then we can get more accuracy method, calculating the static thrust of Linear Pulse Motor(LPM).

  • PDF

An Analysis of the Cutting Force for Peripheral End-milling Considering Run-out (런아웃을 고려한 측면 엔드밀 가공의 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • The cutting force for peripheral end-milling considering run-out property was estimated and its result was compared with that of measured one. An experimental coefficient modelling was used for the formulation of theoretical end-milling force by considering the specific cutting force coefficient. Also, the specific cutting force, that is the multiplication of specific cutting force coefficient and uncut chip thickness, was used for the prediction of end-milling force. The end-milling force mechanics with run-out was presented for the estimation of theoretical force in peripheral end-milling by considering the geometric shape of the workpiece part. As a result, the estimated end-milling force shows a good consistency with the measured one. And it can be used for the prediction of force history in end-milling with run-out which incurs different start and exit immersion angle in entering and exiting condition.

Mode shape expansion with consideration of analytical modelling errors and modal measurement uncertainty

  • Chen, Hua-Peng;Tee, Kong Fah;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.485-499
    • /
    • 2012
  • Mode shape expansion is useful in structural dynamic studies such as vibration based structural health monitoring; however most existing expansion methods can not consider the modelling errors in the finite element model and the measurement uncertainty in the modal properties identified from vibration data. This paper presents a reliable approach for expanding mode shapes with consideration of both the errors in analytical model and noise in measured modal data. The proposed approach takes the perturbed force as an unknown vector that contains the discrepancies in structural parameters between the analytical model and tested structure. A regularisation algorithm based on the Tikhonov solution incorporating the L-curve criterion is adopted to reduce the influence of measurement uncertainties and to produce smooth and optimised expansion estimates in the least squares sense. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is then utilised to demonstrate the applicability of the proposed expansion approach to the actual structure. The results from the benchmark problem studies show that the proposed approach can provide reliable predictions of mode shape expansion using only limited information on the operational modal data identified from the recorded ambient vibration measurements.

Implementation of Bilateral Control of fuzzy Robot Hand using Analytic Hierachy Process (계층적 분석방법을 이용한 퍼지 로봇 핸드의 양방향 제어의 구현)

  • 진현수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2827-2830
    • /
    • 2003
  • Tele manipulator is distingushed from industrial robot by iterating same specified work. Manipulator operator is included in control loop for controlling the telemanipulator because he decide directly during the work and order controllabily reducing the modelling error of telemanipulator which depend on the PID controller. But position-force control method of bidirectional control impose unsafety of vibiration and Analytic Hierachy Method can stabilize for reducing nonlinear modelling error by expert operator because of transformation empirical control rule to linear model.

  • PDF

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.

Formulation, Measurement and Analysis for the Static Thrust of LPM (LPM의 정추력 정량화 및 측정 분석)

  • Kim D.H.;Bae D.K.;Kim K.H.;Park H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.304-307
    • /
    • 2003
  • Usually, the thrust of a Linear Pulse Motor(LPM) is calculated by magnetic equivalent circuit modelling method. Analytical thrust deviation exists to calculating magnetic flux density by using Permeance Modelling Method, Finite Element Method, and Velocity Electric Motive Force method. For calculating accuracy thrust by using these every method, tire thrust is calculated and compared by Lorentz Force method, Magnetic coenergy Method, and Maxwell correspondence forte Method. And that becomes Important factor at the comparison of each capacity and parameter of motor. So this study wants to compare and analyze measurement data and calculating data of the static thrust of LPM. and then we can get more accuracy method, calculating the static thrust of LPM.

  • PDF

Design and Control of Haptic Device using Voice Coil Type Motor (보이스 코일형 모터를 이용한 햅틱 장치의 설계 및 제어)

  • Sung, Ha-Gyeong;Borm, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.439-445
    • /
    • 2002
  • In this paper force feedback control system is investigated for improving the quality of the haptic feedback in virtual reality applications. We suggested the method of controlling the haptic device and modelling the virtual environment. Haptic device is composed of five bar link structure, voice coil motor, control board, and virtual environment modeling program. We applied voice coil motor in the actuating system for simple structure and easy control. Virtual environment modelling is constructed in PC, and the control signals of the actuators and the encoder data are transferred to the control system through USB. Experiment is performed to evaluate the characteristics of the haptic device.

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.