• 제목/요약/키워드: Force Distribution

검색결과 1,958건 처리시간 0.031초

고장이 존재하는 육족 보행 로봇을 위한 대수적 힘 분배 (Algebraic Force Distribution in Hexapod Walking Robots with a Failed Leg)

  • 양정민
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.457-463
    • /
    • 2009
  • 본 논문에서는 육족 보행 로봇의 새로운 힘 분배 알고리듬을 제안한다. 본 논문에서 고려하는 육족 보행 로봇은 다리 하나에 관절고착고장이 발생하여 내고장성 정적 세다리 걸음새로 보행한다. 제안되는 힘 분배 알고리듬의 핵심은 내고장성 걸음새가 가지는 안정여유도를 결정하는 지지 다리의 미끄러짐을 최소화시키는 것이다. 불연속적으로 움직이는 내고장성 세다리 걸음새는 정상 걸음새보다 안정도가 떨어진다는 약점이 있다. 본 논문에서 제안하는 힘 분배 알고리듬은 이러한 약점을 고려하여 내고장성 걸음새의 지지 다리가 세 개라는 성질과 Zero-Interaction Force 원리를 이용하여 최적화 기법을 쓰지 않고 대수적으로 모든 다리의 힘 성분을 구한다. 컴퓨터 시뮬레이션 사례 연구를 통해서 제안된 힘 분배 알고리듬과 기존 방법의 비교 분석을 실시하고 제안된 방법의 효용성을 입증한다.

면진건축물의 내진설계를 위한 지진하중 분배식 제안 (Vertical Distribution of Seismic Load for Earthquake Resistnat Design of base Isolated Building Structures)

  • 이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.212-219
    • /
    • 1999
  • In this paper we investigated an applicability of earthquake regulations for seismic-isolated building structures which has been used currently and propose an efficient method for vertical distribution of seismic loads. The distribution of force is revised in UBC-94 as vertical distribution of force of UBC(Uniform Building Code)-91 is not sufficient safety but its distribution is inefficient expensive because of similar expression to fixed-based structures. In order to overcome this difficulties improved vertical distribution to fixed-based structures. In order to overcome this difficulties improved vertical distribution of seismic load is proposed using two degrees-of-freedom isolated structures and mode shape of fixed-based structures. Efficiency and accuracy of the proposed method are verified through analysis of an example structures with moment resisting frame and shear walls so this study approximate to dynamic analysis results in each case.

  • PDF

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Lorentz Force Density Distribution of a Current Carrying Superconducting Tape in a Perpendicular Magnetic Field

  • Yoo, J.;Kwak, K.;Rhee, J.;Park, C.;Youm, D.;Park, B.J.;Han, Y.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.13-16
    • /
    • 2010
  • The Lorentz force distribution of a high $T_c$ superconducting tape with increasing transport currents in magnetic field ($H_a$) was visualized. The external magnetic field was applied normally to the coated conductor tape surface after zero-field cooling, and the transport current ($I_a$) was increased stepwise from 0 to 90 % of the values of the critical current ($I_c$ ($H_a$)) at applied filed, Ha. The field distribution (H(x)) near the sample surface across the tape width (2w) was measured using the scanning Hall probe method. Applying an inversion to the measured field distribution, we obtained the underlying current distribution (J(x)), from which the magnetic induction, B(x) was calculated with Biot-Savart law. Then Lorentz force per unit length was calculated using F(x)=J(x)${\times}$B(x), which appears to be very inhomogeneous along the tape width due to the complicated distributions of J(x) and B(x).

3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구 (A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method)

  • 백윤수;박준혁
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

선박블록 탑재용 러그구조의 설계합리화를 위한 연구 (A Study for Rationalization of Lifting Lug Design of Ship Block)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

연속주조기에서 Driven Roll Motor의 Load Sharing 제어 (Load Sharing Control of Driven Roll in Continuous Caster)

  • 천창근;신건;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.715-718
    • /
    • 2002
  • As the modern technology of continuous casting plant is focused on improvement of slab quality, the control system of strand driven roll which has positive effect is investigated in this paper. An irregular distribution of withdrawal force gives rise to horizontal crack in high and middle grade carbon steel. Based on the basic understanding on design concept of high technology company, monitoring the withdrawal force distribution of strand driven roll and analysis of the control system was Performed at continuous casters of POSCO. The control algorithm of withdrawal force distribution for A.C motor vector control, which was derived from above study and had been applied for POSCO Kwangyang 1-4 continuous casting plant, is presented.

  • PDF

구조물의 에너지를 이용한 확률에 기초한 능동제어 (Probability-Based Active Control Using Structure Energy)

  • Min, Kyung-Won;Hwang, Jae-Seung;Lee, Sang-Hyun;Lan Chung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.47-55
    • /
    • 2003
  • This paper Presents active control algorithm using probability density function of structural energy. It is assumed that the structural energy under excitation has Rayleigh probability distribution. This assumption is based on the fact that Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of control force is determined by Lyapunov controller design method. Proposed control algorithm shows much reduction of peak responses under seismic excitation compared to LQR controller, and it can consider control force limit in the controller design. Also, chattering problem which sometimes occurs in Lyapunov controller can be avoided.

  • PDF

잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究) (The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck)

  • 박상길;박현수;안익성;김우생
    • 대한토목학회논문집
    • /
    • 제29권1B호
    • /
    • pp.83-90
    • /
    • 2009
  • 본 연구는 잔교를 설계할 때 수리모형실험을 통하여 잔교상판에 작용하는 양압력 분포 특성에 대해 기술하였다. 양압력이 상판하부에 작용할 때 압축공기 유출의 유무에 따라 양압력이 작용하는 형상이 다르고 양압력의 크기가 다르게 분포하고 있음을 알았다. 동일 Block 상판내의 양압력분포는 상판의 중심점과 가장자리에서 동일한 분포를 하지 않는 결과를 얻었다. 양압력 분포특성은 잔교길이인 무차원(l/L), 파형경사(H/L), 공간(D/H)에 의해 영향을 받는다. 양압력에 영향을 미치는 무차원 요소(H/L)은 양압력의 최대치를 결정하는 D/H의 값이 존재하고 있다는 것을 알았다. 동일한 D/H인 경우도 양압력은 파형경사에 따라서 변화하고 있다. 즉, H/L이 클수록 (D/H)이 작기 때문에 잔교를 설계할 때 $D_{max}$가 되는 Clearance가 생기지 않는 상판높이를 정하는 것이 안전한 설계가 된다. 압축공기가 양압력에 미치는 영향을 검토한 결과 양압력이 크게 작용하는 On-shore에서는 Off-shore보다 압축공기에 의한 양압력의 저감효과가 크게 발생하고 있다. 상판에 작용하는 양압력을 저감시키기 위해서는 압축공기 유출을 방지하는 상판설계가 필요하다.

등산화의 종류와 보행동작에 따른 지면반력 및 족저압력 분석 (Analyses of GRF & Insole Foot-Pressure Distribution: Gait Patterns and Types of Trekking Boots)

  • 박승범;이중숙
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.191-200
    • /
    • 2007
  • The purpose of this study was to analyze the foot-pressure distribution of trekking boots for assessing their functionality. Subjects participated in this study included 10 university male students who had no injury experience in lower limbs and a normal gait pattern. The size of all subjects was 270mm. Five models of trekking boots, most popular in Korea (A, B, C, D & E company), were selected for the test. Using the PEDAR-X system and PEDAR-X insoles, 5 different walking stages were analyzed for the foot-pressure distribution: (a) straight gait; (b) $45^{\circ}$ turn gait; (c) $25^{\circ}$ uphill gait; and (d) $25^{\circ}$ downhill gait. Results of the foot-pressure distribution and functionality on each stage were as follow; 1. Straight gait - In case of Max ground reaction force, mean plantar pressure and Max plantar pressure, there was not a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. 2. $45^{\circ}$ turn gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and A company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and A company were superior to those by other companies in terms of functionality. 3. $25^{\circ}$ uphill gait - In Max ground reaction force, mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E and C company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E and C company were superior to those by other companies in terms of functionality. 4. $25^{\circ}$ downhill gait - In Max ground reaction force, Mean plantar pressure and Max plantar pressure, there wasn't a distinct tendency; however, products manufactured by E company showed relatively lower pressure distribution. Results also revealed that the products manufactured by E company were superior to those by other companies in terms of functionality. Overall, five pairs of trekking shoes selected in this study showed the excellent performance in several conditions. The findings above may provide us with the important criteria for choosing trekking boots.