• Title/Summary/Keyword: Force Coupling

Search Result 424, Processing Time 0.08 seconds

Force Characteristics Analysis of Halbach Array Magnetized Tubular-Type Magnetic Coupling (Halbach 배열 자화를 갖는 Tubular 타입 커플링의 힘 특성 해석)

  • Kim, Chang-Woo;Kim, Jeong-Man;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.762-763
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the force characteristics of halbach array magnetized tubular type magnetic coupling using Analytical method. Analytical method was used, to find force characteristics. Finite element method (FEM) is used to validate force characteristics.

  • PDF

Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling (반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석)

  • Kim, Chang-Woo;Jung, Kyoung-Hun;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

A Permanent-Magnet Linear Motor Shape Optimal Design Using Coupling Particles Swarm Optimization

  • Baatar, Nyambayar;Pham, Minh-Trien;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.788_789
    • /
    • 2009
  • The cogging force of a permanent-magnet linear motor is a major component of the detent force, but unfortunately makes a ripple in the thrust force and induces undesired vibration and acoustic noise. In this paper, Coupling Particles Swarm Optimization is applied to optimization the shape of permanent magnet linear motor by minimizing the undesired vibration and acoustic noise in the thrust force and also considering the maximum thrust force. The result shows that the 9-pole 10-slot PMLM removes almost of the cogging force while giving a big thrust force.

  • PDF

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

Nonlinear Adaptive Control for A Linear-Motor-Driven Two Axes through A Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 통한 리니어 모터의 비선형 적응제어)

  • Han, Sang-Oh;Hwang, Woo-Hyun;Lee, Sang-Min;Huh, Kun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.902-906
    • /
    • 2008
  • The linear motors are easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. For highspeed/high-accuracy position control of a linear-motor-driven two axes, a nonlinear adaptive controller including a cross-coupling algorithm is designed in this paper. The nonlinear effects such as friction and force ripple are estimated and compensated. An enhanced approach for cross-coupling algorithm is proposed to effectively improve the biaxial contour accuracy with the closed-loop stability. The proposed controller is evaluated through the computer simulations.

  • PDF

Influence of a the Velocity of Moving Mass on Dynamic Behavior of Simple Beam Subjected to Uniformly Distributed Follower Forces (이동질량의 속도가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • Yoon, H.I.;Im, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.65-69
    • /
    • 2000
  • On the dynamic behavior of a simple beam subjected to an uniformly distributed tangential follower force, the influences of the velocities and magnitudes of a moving mass have been studied by numerical method. The instant amplitude of a simple beam is calculated and analyzed for each position of the moving mass represented by the time functions. The uniformly distributed tangential follower force is considered within its critical value of a simple beam, and four values of velocity is also chosen. Their coupling effects on the deflections of a simple beam are inspected too. When a moving mass moves after middle zone of a simple beam at the low velocities, its deflection is increased by the coupling of an uniformly distributed tangential follower force and moving mass.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

A Magnetostrictive Force and Vibration Mode Analysis of 3 kW BLDC Motor by a Magneto-Mechanical Coupling Formulation

  • Shin, Pan-Seok;Cheung, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper proposes a method to calculate magnetostrictive forces, displacement, and vibration modes of a large-scale Brushless DC(BLDC) motor by using a magneto-mechanically strong coupling formulation. The force is calculated using the energy method with magnetostrictive stress tensor. The mechanical vibration modes are also analyzed by using the principle of Hamilton and the calculated magneto-elastic forces acting on the surfaces of the stator. To verify the algorithm, 3 MW BLDC motor is simulated, and the forces, displacements, and vibration modes are calculated. The result shows that the mechanically stressed core has more deformation or displacements than those of the normal condition.

Seismic performance evaluation of coupled core walls with concrete and steel coupling beams

  • Fortney, Patrick J.;Shahrooz, Bahram M.;Rassati, Gian A.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.279-301
    • /
    • 2007
  • When coupling beams are proportioned appropriately in coupled core wall (CCW) systems, the input energy from ground motions is dissipated primarily through inelastic deformations in plastic hinge regions at the ends of the coupling beams. It is desirable that the plastic hinges form at the beam ends while the base wall piers remain elastic. The strength and stiffness of the coupling beams are, therefore, crucial if the desired global behavior of the CCW system is to be achieved. This paper presents the results of nonlinear response history analysis of two 20-story CCW buildings. Both buildings have the same geometric dimensions, and the components of the buildings are designed based on the equivalent lateral force procedure. However, one building is fitted with steel coupling beams while the other is fitted with diagonally reinforced concrete coupling beams. The force-deflection relationships of both beams are based on experimental data, while the moment-curvature and axial load-moment relationships of the wall piers are analytically generated from cross-sectional fiber analyses. Using the aforementioned beam and wall properties, nonlinear response history analyses are performed. Superiority of the steel coupling beams is demonstrated through detailed evaluations of local and global responses computed for a number of recorded and artificially generated ground motions.

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.