• 제목/요약/키워드: Force/position control

검색결과 700건 처리시간 0.038초

두 팔이 달린 이동 로봇의 위치기반 힘 제어응용 (Position-Based Force Control Application of a Mobile Robot with Two Arms)

  • 안재국;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.315-321
    • /
    • 2013
  • This paper presents the position-based force control application of a mobile manipulator. The mobile manipulator consists of two six DOF manipulators and a mobile robot. Kinematics of the robot is analyzed and simulated to validate the analysis. A position-based force control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of force control applications of robot arm and interaction with a human operator are conducted. Experimental results show that the robot arm is well regulated to follow the desired force.

가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발 (Development of Ultrasonic Machine with Force Controlled Position Servo System)

  • 장인배;이승범;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

한 쌍의 6축 전기유압 매니퓰레이터의 힘제어 (Force Control of one pair of 6-Link Electro-Hydraulic Manipulators)

  • 안경관;조용래;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 1997
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and this parameter fluctuations are greater than those of electrically driven manipulator. So this is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field task such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to there real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observe for position control. The difference between force and position disturbance observer is that the input and output of disturbance observer are forces in the case force disturbance observer and the plant varies much compared to the case of position control. In the design of force disturbance observer, generalized plant is derived and the stabilized filter is designed by H infinity control theory to ensure the robuts t stability even though the stiffness of environment changes from sponge to steel, and the contact surface also changes from flat to round shape. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

  • PDF

공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계 (Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

Hybrid Position/Force Control of Robot Manipulator using Fuzzy Logic Control

  • Ahn, Ihn-Seok;ahn, Kwang-Seok;Kim, Sang-Bin;Jang, Jun-Oh;Park, Sang-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.129.5-129
    • /
    • 2001
  • When a robot manipulator performs some task like grinding or assembling, not only the position control but also the force control of the tools connected to the robot must be controlled. But at this time We were received the uncertainty problems of system information for the force control, for example disturbance, senor resolution and measurement noise. Therefore we proposed fuzzy logic control method instead of existing control theory for the robot manipulator control, for example PID control method. In this paper, We proposed hybrid position/force control of robot manipulator using fuzzy logic control method. To show the validity of the proposed fuzzy controller, We compared fuzzy controller with conventional PID controller.

  • PDF

공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어 (Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System)

  • 조민수;장지성
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어 (Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process)

  • 양호석;심영복;이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

비례솔레노이드 액추에이터를 이용한 압력제어밸브 (Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator)

  • 함영복;박평원;윤소남
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어 (Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot)

  • 추정훈;김수호;이상범;김정민
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.