• 제목/요약/키워드: Foraminifera

Search Result 64, Processing Time 0.022 seconds

Implications of the Recent Benthec Foraminifera in Gwangyang Bay, Korea (光陽 에서의 現생底棲 有孔蟲에 관한 硏究)

  • 장순권
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 1986
  • A total of 40 surface samples(12 from the intertidal flat and 28 from the subtidal zone) from Gwangyang Bay, southern coast of the Korean Peninsula show a strong negative relationship between the total foraminiferal abundance and the ratios of the live to the total(L/T) assemblages. This suggests that the foraminiferal abundance is dependent on the dilution due to the input of detrital sediments, and that the L/T ratios show the relative rate of sedimentation in the study area. The intertidal flat and delta area are characterized by the relatively high sedimentation compared to the inner bay and shallow subtidal zone, and three major tidal channels where relatively low and no sedimentation is noted, respectively. Bathymetric occurrence of the species shows distinct boundaries at 9m, and between 21 and 30m, respectively. Cluster analysis shows three biotopes;intertidal flat including delay, inner bay and shallow subtidal zone, and major tidal channels. This suggests that these biotopes are formed by the ecology of the foraminifers as well as by the sedimentological setting of the study area. Several problems in relation to the relative rate of sedimentation inferred from the L/T ratios are briefly discussed.

  • PDF

Meiobenthic Communities in Extreme Deep-sea Environment (심해 극한 환경에서의 중형저서동물 군집)

  • Kim Dong-Sung;Min Won-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.spc1
    • /
    • pp.203-213
    • /
    • 2006
  • The spatial patterns of meiobenthic communities in deep-sea sediment were examined. Sediment samples for analyzing of meiobenthic community structure were collected using a remote operated vehicle (ROV), multiple corer TV grab at 20 stations at five sites. In all, 15 meiofauna groups were recorded. Nematodes were the most abundant taxon. Benthic foraminiferans, harpacticoid copepods, polychaetes, and crustacean naupii were also dominant groups at all sites. The total meiofauna density at the study sites varied from 49 to 419 ind./$10cm^2$. The maximum density was recorded at a site located in Challenger Deep in the Mariana trench where simple benthic foraminifera with organic walls flourish. These distinctive taxa seem to be characteristic of the deepest ocean depths. Active hydrothermal sediments contain up to 150 harpacticoid copepods per $10cm^2$ of sediment. In a inactive ridge sediments, devoid of macrofaunal organisms:, the abundance of harpacticoid copepods never exceeded 15 ind./$10cm^2$. Multivariate analysis (multidimensional scaling) revealed significant differences in community structure among the three regions; near an active hydrothermal vent, in the deepest ocean depths and at typical deep-sea bed sites.

Paleoceanographic Records from the Northern Shelf of the East China Sea since the Last Glacial Maximum

  • Li, Bao-Hua;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • v.34 no.3
    • /
    • pp.151-166
    • /
    • 1999
  • Both benthic and planktonic foraminifera from Core 97-02 obtained in the northern East China Sea are quantitatively analyzed for reconstructing the paleocenography of late Quaternary. Since the earliest time of the core sediment (last not older than 18000 yr B.P.), the paleo-water depth has changed from less than 20 m to near 100 m at present, which is reflected by the benthic foraminiferal assemblages: before 14000 yr B.P., the water depth was shallower than 20 m; from 14000 to 7500 yr B.P., water depth was 20-50 m; and after 7500 yr B.P., water depth was 50-100 m. The foraminiferal fauna also disclose the water mass history: during the last glacial maximum, the water that dominated the study area might be the coastal water; at the end of the last glacial maximum(14000-9500 yr B.P.), the Yellow Sea Cold Water mostly affected this area; then it gave way to the Yellow Sea Warm Current after 9500 yr B.P.; and finally, the warm water has dominated this area since 9500 yr B.P. because of the westward shift and enhancement of the Kuroshio Current.

  • PDF

Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea) (동해 남한국대지 퇴적물의 생물기원 성분 입도 분포의 특성과 고해양학적 의미)

  • Jang, Jun-Ho;Bahk, Jang-Jun;Kim, Eun-Jung;Um, In-Kwon
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.249-261
    • /
    • 2020
  • This study details grain-size distributions (GSDs) of carbonate and biogenic opal fractions of the sediments retrieved from the South Korea Plateau in the East Sea and draws paleocanographic implications from them. The opal-fraction GSDs show fine modes of 10.3 ㎛ and coarse modes of 102.5 ㎛ on average. The fine-mode grains of opal fractions mainly consist of small diatoms and radiolarians including their broken frustules, while the coarse-mode grains are mostly comprised of large warm-water diatoms and radiolarians. Significant positive correlation between opal contents and abundances of the coarse-mode GSDs in the total GSDs suggests that the abundances of the coarse-mode GSDs were controlled by the increased surface productivity of warm-water diatoms during interglacial stages. The carbonate-fraction GSDs show fine modes of 2.4 ㎛ and coarse modes of 99.1 ㎛ on average. The fine-mode grains mainly consist of coccolithophores, while the coarse-mode grains are mostly comprised of intact or broken planktonic foraminifera. The abundances of coarse-mode and fine-mode GSDs were not correlated with carbonate contents, suggesting a complex control exerted by both the degree of carbonate dissolution and the productivity of coccolithophores on the carbonate-fraction GSDs.

Morphology, molecular phylogeny, and pigment characterization of an isolate of the dinoflagellate Pelagodinium bei from Korean waters

  • Potvin, Eric;Jeong, Hae Jin;Kang, Nam Seon;Noh, Jae Hoon;Yang, Eun Jin
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.183-195
    • /
    • 2015
  • The dinoflagellate genus Pelagodinium is genetically classified in distinct sub-clades and subgroups. However, it is difficult to determine whether this genetic diversity represents intra- or interspecific divergence within the genus since only the morphology of the type strain of the genus Pelagodinium, Pelagodinium bei, is available. An isolate associated with the genus Pelagodinium from Shiwha Bay, Korea, was recently cultured. This isolate was clustered with 3 to 4 strains from the Atlantic Ocean, Mediterranean Sea, and Indian Ocean. This cluster was distinct from the subgroup more closely associated with P. bei. The morphology of the isolate was analyzed using optical and scanning electron microscopy and was almost identical to that of P. bei except that this isolate had two series of amphiesmal vesicles (AVs) in the cingulum, unlike P. bei that has one series. When the pigment compositions of the isolate and P. bei were analyzed using high-performance liquid chromatography, these two strains had peridinin as a major accessory pigment and their pigment compositions were almost identical. In addition, the swimming behaviors of these two strains were very similar. The reexamination of the type culture of P. bei revealed two series in the cingulum as for the isolate. The new findings on the number of series of AVs in the cingulum, the pigment composition, and the swimming behaviors suggest that P. bei and the isolate are conspecific despite their genetic divergence. This study provides a basis to further understand the molecular classification within Pelagodinium combining genetic, morphological, pigment, and behavioral data.

Temporal and Spatial Variations of Sinking-particle Fluxes in the Northwestern Subtropical Pacific (북서태평양 아열대 해역에서 침강입자 플럭스의 시·공간 변동)

  • Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min;Jeon, Dong-Chull;Jeong, Jin-Hyun;Khim, Boo-Keun;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.385-395
    • /
    • 2011
  • Time-series sediment traps were deployed at 1,000 m water depth of the northwestern subtropical Pacific from July 2009 to June 2010, with the aim of understanding temporal and spatial variations of sinking-particle fluxes. The opening and closing of the traps was synchronized at 18-day periods for 20 events. Total mass fluxes showed distinct seasonal variations with high values for the summer-fall seasons and relatively low values for winter-spring. This seasonal variation at two stations was characterized by a distinct difference in $CaCO_3$ fluxes between the two seasons. The enhanced $CaCO_3$ flux in the summer - fall seasons might be attributed to an increased planktonic foraminiferal flux. Total mass flux at FM10 station was nearly 50% higher than that at FM1 station. The difference in $CaCO_3$ fluxes between two stations contributed nearly 70% of the difference of total mass fluxes. The $CaCO_3$ flux was a major component controlling temporal and spatial variation of sinking - particle fluxes in the western subtropical Pacific Ocean.

Late Pleistocene Paleoceanographic Changes of the West Equatorial Pacific (서태평양 적도 지역의 플라이스토세 후기 고해양 변화)

  • Yoo, Chan-Min;Hyeong, Ki-Seong;Moon, Jai-Woon;Kim, Ki-Hyune;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.175-185
    • /
    • 2004
  • To delineate Late Pleistocene paleoceanographic change of the West Pacific, we analyzed the oxygen and carbon isotopic ratios of two planktonic foraminifera species (G. sacculifer and N. dutertrei) from a piston core (KODOS-313) taken from the West equatorial Pacific, and they are compared with the published results of the East Pacific (ODP site 847 and RC 11-210), in terms of relative amounts and mass accumulation rates of $CaCO_3$ and eolian component, back to marine isotopic stage (MIS) 6. Differences in oxygen and carbon isotope values between two foraminifear species ($0.75%_{\circ}$ in ${\delta}^{18}O$, $0.05%_{\circ}$ in ${\delta}^{13}C$) are less than those of the East Pacific ($1.30%_{\circ}$ in ${\delta}^{18}O$, $0.14%_{\circ}$ in ${\delta}^{13}C$), which indicates smaller vertical contrasts in both temperature and nutrient between mixing-zone and thermocline in the West Pacific. Strong deviation in${\delta}^{18}O$ of G. sacculifer from SPECMAP suggests the carbonate fraction of KODOS-313 was subjected to partial dissolution by bottom water under lysocline. Lower accumulation rates of $CaCO_3$ and eolian component during glacial times are likely due to low sedimentation rate (ave. 0.75 cm/1000 yr) combined with carbonate dissolution in KODOS-313 site. However, the high $CaCO_3$ contents during the glacial periods clearly follow the general pattern of equatorial Pacific ocean.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

울릉분지 돌고래 시추공의 생층서: 고환경 및 이들의 석유탐사에의 응용

  • 이성숙;윤혜수;배부영;박세진;이의형;강소라;김재호;김기현
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.50-67
    • /
    • 1999
  • Biostratigraphic and paleoenvironmental analyses are carried out on cutting samples from the Dolgorae wells drilled in the Ulleung basin. The clayey, silty, and sandy sediments of the wells yield various microfossil assemblages of relatively good preservation, among which five fossil groups are reported; a total of 97 foraminiferal species of 66 genera, 19 nannofossil species of 12 genera, 86 ostracod species of 41 genera, 107 diatom species of 44 genera, and 124 dinoflagellate cysts species of 45 genera. Based on microfossils the geologic ages of the Dolgorae wells are dated to be from late Early Miocene to Early Pleistocene. Several biohorizons are defined in Neogene successions by the LOD (Last Ocurrence Datum) and FOD (First Ocurrence Datum) of marker species including G. truncatulinoides (LOD: 1.9 Ma) of foraminifera; C. macintyeri (LOD: 1.64-1.60), G. oceanica (FOD: 1.65 Ma), G. caribbeanica (1.72 Ma), D. brouweri (LOD: 2 Ma), R. pseudoumbilica (LOD: 3.66 Ma), P. lacunosa (FOD: 4.2 Ma) of nannofossils; S. ellipsoideus (LOD: 4 Ma), S. palcacantha (LOD: 10.2), C. giusepei (LOD: 14 Ma) of dinocysts; D. seminae v. fossilis (FOD: 3.7 Ma), T. antiqua (LOD: 1.7 Ma), T. convexa (LOD: 2.4 Ma), N. kamtschatica (LOD: 2.58 Ma), T. oestrupii(FOD: 5.1 Ma) of diatoms. Abundance patterns of microfossils throughout the wells reflect changes in paleoenvironmental and sedimentological settings of the basin in relation to sea-level variations. According to these data the large-cycle and small-cycle changes of transgression and regression phases are observed in terrestrial to marine sediments. This high-resolution sequence biostratigraphy established by various fossil groups enabled more reliable correlation between strata and refined interpretation on deposition systems of the basin. It also proved to provide fundamental and precise informations regarding stratigraphic correlation, tectonic events, basin, and depositional history for hydrocarbon explorations, especially in collaboration with seismic-stratigrahic analyses.

  • PDF

Late Holocene Sedimentation Rates from Core Sediments of the Western Part of the East Sea, Korea (한국 동해 서측해역에서 채취한 시추 퇴적물의 후기 현세 퇴적률 연구)

  • 박병권;한상준
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.382-389
    • /
    • 1995
  • This study intended to investigate the sedimentation rates of core sediments of the western part of the East Sea using Accelerator Mass Spectrometer (AMS) C-age on the planktonic foraminifera or acid-ex-tracted residue, base-soluble and base-extracted residue fractions. On the basis of the depth-age correlations, the sedimentation rates during the late Holocene period of Cores HP-10, HP-3, 94-9 and 92-3 were 30 cm/kyr, 10 cm/kyr, 11 cm/kyr and 112 cm/kyr, respectively. The sedimentation rates of the westem part of the East Sea, however, seems to be ranged from 11 cm/kyr to 30 cm/kyr, because the rates of the only two cores (Cores HP-10 and 94-9) which were dated at more than three depths are considered to be more reliable. The rates in each core sediment showed good linear relationship with the sample depth, suggesting that the sea-level rise had been finished nearly during the early Holocene period and the general depositional environments had been lasted rather constant during the late Holocene period.

  • PDF