• 제목/요약/키워드: For-bar linkage

검색결과 87건 처리시간 0.026초

사용자를 고려한 병렬형 6자유도 햅틱 핸드 콘트롤러의 설계 (Design of a User-Oriented 6-DOF Parallel Haptic Hand Controller)

  • 류동석;권태용;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.313-318
    • /
    • 2001
  • A haptic hand controller operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. This paper presents a design method for KU-HHC, 6 DOF Korea University-haptic hand controller, which allows separation of workspace from linkage mechanism in consideration of the efficient user operation. First, the 3 DOF mechanism in which all the actuators are mounted on the fixed base is developed by combining a 5-bar linkage and gimbal mechanism. Then, the 6 DOF HHC is designed by connecting the two 3 DOF devices through a handle. This paper presents the forward and inverse kinematics for this device and Jacobian analysis. Improvement of the kinematic characteristics using performance index is also discussed. The hand controller KU-HHC based on this design concept and kinematic analysis was manufactured and shows excellent performance.

  • PDF

6절 링크를 이용한 진동굴취기의 설계요인 (Design Parameters of A Six-bar Linkage Vibrating Digger)

  • 문학수;강화석
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 2003
  • An oscillating digger mechanism was designed, constructed. and tested. The mechanism is consisted of a six-bar linkage, one four-bar linkage was fer the digger blade and the other one fur variable soil-crop separation. Experimental variables were amplitude(3, 6, 9 mm). frequency(11.2, 14.9. 17.0 Hz), and forward speed of tractor(0.91, 1.13, 1.56 km/h). Each combination of these variables was replicated three times to measure the draft and torque for power requirement evaluation. and the broken-up soil height on the soil separation sieve mechanism. Four parameters λ(the ratio of vibration speed to forward velocity), p(the ratio of vibration acceleration to forward velocity), K(the ratio of vibration acceleration to gravitational acceleration), and T(the product of λ and K) were induced from three experimental variables: amplitude, frequency, and tractor speed. And the power requirement and soil separation ability were analyzed by regression. Though λ and K were known to be the representative parameters. T was the most moderate one to explain draft. torque. and soil separation in this study. It was estimated that the T equal to or greater than 2.4 was the minimum recommended value. Figure 18 would be useful fir the selection of amplitude. frequency, or operating tractor speed once any two variables are known.

3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구 (Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis)

  • 이석천;김재은;이상종
    • 항공우주시스템공학회지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.

4절 링크 기구의 동적 변형 해석 (II) (Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II))

  • 조선휘;박종근;주동인
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.910-923
    • /
    • 1992
  • 본 연구에서는 가장 응용 빈도가 큰 크랭크-레버 4절 기구를 제작하고 강성과 유연성 두가지 베어링을 사용하여 연결봉과 레버의 중점의 변형률을 스트레인 게이지 로 측정하여 앞의 이론 논문에서 수행한 수치해석의 결과와 비교 검토하였다.

신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘 (Underactuated Finger Mechanism for Body-Powered Partial Prosthesis)

  • 윤덕찬;이건;최영진
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

전달각을 이용한 오프셋 슬라이더-로커 링크장치의 합성 (Offset Slider-Rocker Linkage Synthesis Using Transmission Angles as Synthesis Parameters)

  • 권성규
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.881-893
    • /
    • 2000
  • An analytical synthesis technique for offset slider-rocker 4-bar linkages is devised where transmission angles are used as essential synthesis parameters. Finding the location where both the maximum and the minimum transmission angles arise leads to establishing the algorithm for limiting transmission angles of the slider-rocker linkage which has different offsets according to the direction of the slider. Position analysis by the algorithm gives formula for the dimensional synthesis for the linkage. Application to examples shows that the algorithm and the formula yield proper slider-rocker linkages with regard to limiting transmission angles to the maximum value.

4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘 (Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage)

  • 박정준;김병상;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF

4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너 (Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism)

  • 채기운;배진현;정영훈
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.