• Title/Summary/Keyword: Footprint

Search Result 439, Processing Time 0.023 seconds

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

Development of Water Footprint Inventory Using Input-Output Analysis (산업연관분석을 활용한 물발자국 인벤토리 개발)

  • Kim, Young Deuk;Lee, Sang Hyun;Ono, Yuya;Lee, Sung Hee
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Water footprint of a product and service is the volume of freshwater used to produce the product, measured in the life cycle or over the full supply chain. Since water footprint assessment helps us to understand how human activities and products relate to water scarcity and pollution, it can contribute to seek a sustainable way of water use in the consumption perspective. For the introduction of WFP scheme, it is indispensable to construct water inventory/accounting for the assessment, but there is no database in Korea to cover all industry sectors. Therefore, the aim of the study is to develop water footprint inventory within a nation at 403 industrial sectors using Input-Output Analysis. Water uses in the agricultural sector account for 79% of total water, and industrial sector have higher indirect water at most sectors, which is accounting for 82%. Most of the crop water is consumptive and direct water except rice. The greatest water use in the agricultural sectors is in rice paddy followed by aquaculture and fruit production, but the greatest water use intensity was not in the rice. The greatest water use intensity was 103,263 $m^3$/million KRW for other inedible crop production, which was attributed to the low economic value of the product with great water consumption in the cultivation. The next was timber tract followed by iron ores, raw timber, aquaculture, water supply and miscellaneous cereals like corn and other edible crops in terms of total water use intensity. In holistic view, water management considering indirect water in the industrial sector, i.e. supply chain management in the whole life cycle, is important to increase water use efficiency, since more than 56% of total water was indirect water by humanity. It is expected that the water use intensity data can be used for a water inventory to estimate water footprint of a product for the introduction of water footprint scheme in Korea.