Human footprint를 고려하는 글로벌 수문 및 수자원 모형

  • 김연주 (연세대학교 사회환경시스템공학부) ;
  • 이상현 (연세대학교 사회환경시스템공학부)
  • Published : 2018.02.15

Abstract

Keywords

References

  1. 김연주, 정은성 (2015) 사회-수문학(Socio-hydrology) 혹은 수문사회학(Hydro-sociology): 인간과 물 순환과의 상호진화 연구. 물과 미래,48, 34-43.
  2. 손경환, 이문환, 배덕효 (2012) 지표수문해석모형을 활용한 동아시아 유출해석 및 평가. 한국수자원학회논문집, 45(2), 165-178. https://doi.org/10.3741/JKWRA.2012.45.2.165
  3. Alcamo J et al. (1997) Global change and global scenarios of water use and availability: An application of WaterGAP 1.0., Rep. A9701, Cen. for Environ. Syst. Res., Univ. of Kassel, Kassel, Germany.
  4. Alcamo J et al. (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J.,48, 317-337. https://doi.org/10.1623/hysj.48.3.317.45290
  5. Bierkens MFP (2015) Global Hydrology 2015: State, trends, and directions. Water Resour. Res., 51, 4923-4947. https://doi.org/10.1002/2015WR017173
  6. Bondeau A et al. (2007) Modeling the role of agriculture for the 20th century. Global Change Biol., 13, 679-706. https://doi.org/10.1111/j.1365-2486.2006.01305.x
  7. Clark DB et al. (2011) The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701-722. https://doi.org/10.5194/gmd-4-701-2011
  8. Doll P et al. (2003) A global hydrological model for deriving water availability indicators: model tunning and validation. J. Hydrol., 270, 105-134. https://doi.org/10.1016/S0022-1694(02)00283-4
  9. Eagleson P (1986) The emergence of global-scale hydrology. Water Resour. Res., 22, 6S-14S. https://doi.org/10.1029/WR022i09Sp0006S
  10. Ek MB et al. (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, GCP12-1-12-16.
  11. Gerten D et al. (2007) Potential future changes in water limiation of the terrestrial biosphere. Clim. Change, 80, 277-299. https://doi.org/10.1007/s10584-006-9104-8
  12. Haddeland I et al. (2014) Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 3251-3256. https://doi.org/10.1073/pnas.1222475110
  13. Harding RJ et al. (2011) WATCH: Current knowledge of the terrestrial global water cycle. J Hydrometeorol, 12(5), 869-884. https://doi.org/10.1175/2011JHM1324.1
  14. Konzmann M et al. (2013) Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrolog. Sci. J., 58, 1-18. https://doi.org/10.1080/02626667.2012.745082
  15. Koster RD et al. (2004) Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138-1140. https://doi.org/10.1126/science.1100217
  16. Koster RD et al. (2006) GRACE: The global land-atmosphere coupling experiment. Part I: Overview. J. Hydrometeorol., 7, 590-610. https://doi.org/10.1175/JHM510.1
  17. Lawrence DM et al. (2011) Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Sys., 3, M03001.
  18. Levis S et al. (2004) The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide. NCAR Technical Note NCAR/TN-459+IA.
  19. Manabe S (1969) Climate and the ocean circulation. Mon. Weather Rev., 97, 739-774. https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2
  20. Oki et al. (2001) Global assessment of current water resources using total runoff integrating pathways. Hydro. Sci. J., 46, 983-995. https://doi.org/10.1080/02626660109492890
  21. Pitman A et al. (2012) Review: Regionalizing global climate models. Int. J. Climatol., 32, 321-337. https://doi.org/10.1002/joc.2279
  22. Pokhrel Y et al. (2012) Incorporating anthropogenic water regulation modules in to a land surface model. J. Hydrometerol., 13, 255-269. https://doi.org/10.1175/JHM-D-11-013.1
  23. Pokhrel Y et al. (2015) Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res., 51, 78-96. https://doi.org/10.1002/2014WR015602
  24. Sitch S et al. (2003) Evaluation of Ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161-185. https://doi.org/10.1046/j.1365-2486.2003.00569.x
  25. Steffen W et al. (2011) Anthropogcene: conceptual and histroical perspectives. Philos. T. R. Soc. A, 369, 842-867, https://doi.org/10.1098/rsta.2010.0327
  26. van Beek LPH et al. (2011) Global monthly water stress: I. Water balance and water availability. Water Resour. Res., 47, W07517.
  27. Vorosmarty CJ et al. (1989) Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cy., 3, 241-265. https://doi.org/10.1029/GB003i003p00241
  28. Vorosmarty CJ et al. (2000) Global water resources: Vulnerability from climate change and population growth. Science, 289, 284-288. https://doi.org/10.1126/science.289.5477.284
  29. Wada Y et al. (2014) Global modeling of withdrawl, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam., 5, 15-40. https://doi.org/10.5194/esd-5-15-2014
  30. Wada Y et al. (2016) High-resolution modeling of human and climate imapcts on global water resources. J. Adv. Model Earth Sy., 8, 735-763. https://doi.org/10.1002/2015MS000618
  31. Wada Y et al. (2017) Human-water interface in hydrological modelling: current status and future directions. Hydrol. Earh Syst. Sci., 21, 4169-4193. https://doi.org/10.5194/hess-21-4169-2017
  32. Warszawski L et al. (2014) The Inter-Sectoral Impact Model Intercomparison Project(ISI-MIP): Project framework. Proc. Natl. Acad. Sci. USA, 111, 3228-3232. https://doi.org/10.1073/pnas.1312330110
  33. Wisser D et al. (2010) Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydro. Earth Syst. Sci., 14, 1-24. https://doi.org/10.5194/hess-14-1-2010
  34. Wood EF et al., (1992) A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Goephys. Atmos., 97, 2717-2728. https://doi.org/10.1029/91JD01786