• Title/Summary/Keyword: Footbridge

Search Result 45, Processing Time 0.022 seconds

Effect of countermeasures on the galloping instability of a long-span suspension footbridge

  • Ma, Ruwei;Zhou, Qiang;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.499-509
    • /
    • 2020
  • The aeroelastic stability of a long-span suspension footbridge with a bluff deck (prototype section) was examined through static and dynamic wind tunnel tests using a 1:10 scale sectional model of the main girder, and the corresponding aerodynamic countermeasures were proposed in order to improve the stability. First, dynamic tests of the prototype sectional model in vertical and torsional motions were carried out at three attack angles (α = 3°, 0°, -3°). The results show that the galloping instability of the sectional model occurs at α = 3° and 0°, an observation that has never been made before. Then, the various aerodynamic countermeasures were examined through the dynamic model tests. It was found that the openings set on the vertical web of the prototype section (web-opening section) mitigate the galloping completely for all three attack angles. Finally, static tests of both the prototype and web-opening sectional models were performed to obtain the aerodynamic coefficients, which were further used to investigate the galloping mechanism by applying the Den Hartog criterion. The total damping of the prototype and web-opening models were obtained with consideration of the structural and aerodynamic damping. The total damping of the prototype model was negative for α = 0° to 7°, with the minimum value being -1.07%, suggesting the occurrence of galloping, while that of the web-opening model was positive for all investigated attack angles of α = -12° to 12°.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.

Conditions to avoid synchronization effects in lateral vibration of footbridges

  • Andrade, Alexandre R.;Pimentel, Roberto L.;Silva, Simplicio A. da;Souto, Cicero da R.
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.201-220
    • /
    • 2022
  • Lateral vibrations of footbridges may induce synchronization between pedestrians and structure itself, resulting in amplification of such vibrations, a phenomenon identified by lock-in. However, investigations about accelerations and frequencies of the structural movement that are related to the occurrence of synchronization are still incipient. The aim of this paper is to investigate conditions that could lead to avoidance of synchronization among pedestrians themselves and footbridge, expressed in terms of peak acceleration. The focus is on the low acceleration range, employed in some guidelines as a criterion to avoid synchronization. An experimental campaign was carried out, employing a prototype footbridge that was set into oscillatory motion through a pneumatic exciter controlled by a fuzzy system, with controlled frequency and amplitude. Test subjects were then asked to cross the oscillating structure, and accelerations were simultaneously recorded at the structure and at the subject's waist. Pattern and phase differences between these signals were analysed. The results showed that test subjects tended to keep their walking patterns without synchronization induced by the vibration of the structure, for structural peak acceleration values up to 0.18 m/s2, when frequencies of oscillation were around 0.8 to 0.9 Hz. On the other hand, for frequencies of oscillation below 0.7 Hz, structural peak accelerations up to 0.30 m/s2 did not induce synchronization.

Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge

  • Bortoluzzi, Daniele;Casciati, Sara;Elia, Lorenzo;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.459-478
    • /
    • 2015
  • The design of a passive control solution based on tuned mass dampers (TMD's) requires the estimation of the actual masses involved in the undesired vibration. This task may result not so straightforward as expected when the vibration resides in subsets of different structural components. This occurs, for instance, when the goal is to damp out vibrations on stays. The theoretical aspects are first discussed and a design process is formulated. For sake of exemplification, a multiple TMD's configurations is eventually conceived for an existing timber footbridge located in the municipality of Trasaghis (North-Eastern Italy). The bridge span is 83 m and the deck width is 3.82 m.

A full path assessment approach for vibration serviceability and vibration control of footbridges

  • Zhu, Qiankun;Hui, Xiaoli;Du, Yongfeng;Zhang, Qiong
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.765-779
    • /
    • 2019
  • Most of the existing evaluation criteria of vibration serviceability rely on the peak acceleration of the structure rather than that of the people keeping their own body unmoved on the structure who is the real receiver of structural vibrations. In order to accurately assess the vibration serviceability, therefore, a full path assessment approach of vibration serviceability based on vibration source, path and receiver is not only tentatively proposed in this paper, taking the peak acceleration of receiver into account, but also introduce a probability procedure to provide more instructive information instead of a single value. In fact, semi-rigid supported on both sides of the structure is more consistent with the actual situation than simply supported or clamped due to the application of the prefabricated footbridge structures. So, the footbridge is regarded as a beam with semi-rigid supported on both sides in this paper. The differential quadrature-integral quadrature coupled method is not only to handle different type of boundary conditions, but also after being further modified via the introduction of an approximation procedure in this work, the time-varying system problem caused by human-structure interaction can be solved well. The analytical results of numerical simulations demonstrate that the modified differential quadrature-integral quadrature coupled method has higher reliability and accuracy compared with the mode superposition method. What's more, both of the two different passive control measures, the tuned mass damper and semi-rigid supported, have good performance for reducing vibrations. Most importantly, semi-rigid supported is easier to achieve the objective of reducing vibration compared with tuned mass damper in design stage of structure.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

About a synergy effect in design and engineering (디자인과 공학의 시너지 효과에 관하여)

  • Park, Sun-Woo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.69-76
    • /
    • 2005
  • This paper deals with a problem about synergy effect in design and engineering. So far a design processing is paralleled to both in Korea, A cooperation between concept design and working plan must be kept up all the way. From three Personally designed footbridges 1 will make clear a total problem for throughout design processing. If we must solve a gaps between technology and art for structural design, we can get an unexpected result. It will be synergy effect between art and technology, design and engineering.

  • PDF