• Title/Summary/Keyword: Foot-and-Mouth Disease, FMD

Search Result 95, Processing Time 0.033 seconds

Concentrations of metavolite in the leachate from pilot scale burial (실험용 매몰지 침출수의 대사체물질 농도변화)

  • Jeon, Tae-Wan;Park, Ho-Yeun;Hwang, Dong-Gun;Kang, Young-Yeul;Kim, Yong-Jun;Jang, Mi-Jeong;Shin, Sun-Kyoung
    • Analytical Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.185-194
    • /
    • 2018
  • At the end of November 2010, livestock infected with foot and mouth disease (FMD) were buried, increasing concern about secondary pollution of drinking water and groundwater with odor. Hence, measures to reduce pollution of drinking water and groundwater are needed. In this study, based on livestock type and soil texture, five pilot-scale burial sites were monitored for the past three years from Feb 2012 to 2015. Leachate from the site was analyzed for 90 compounds. A detailed investigation has been completed, looking into organic matter decomposition characteristics of the buried bodies, relevant trace elements thereof, and in particular metabolite concentration changes such as the degree of decomposition of a carcass. From the results, no detectable heavy metals, including cadmium and arsenic, were measured. Among animal types, the rate of cattle decomposition is faster than swine decomposition, and the decomposition of the bodies were performed in sequence from sand, clay loam, sandy loam.

A Study on IoT based Forensic Policy for Early Warning System of Plant & Animal as A Subsystem of National Disaster Response and Management (국가재난형 동·식물 조기경보시스템을 위한 IOT기반의 포렌식 정책 연구)

  • Chung, Ho-jin;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.295-298
    • /
    • 2014
  • In recently, a climatic change(such as subtropical climate and frequent unusual high temperature) and the open-trade policies of agricultural & livestock products are increasing the outbreak risk of highly pathogenic avian influenza(HPAI) and foot and mouth disease(FMD), and accordingly the socio-economic damage and impacts are also increasing due to the cases such as damage from the last 5 times of FMD outbreak(3,800 billion won), from 10 years public control cost of Pine Wilt Disease (PWD)(238.3 billion won), and from the increased invasive pests of exotic plant like isoptera. Therefore, the establishment of new operation strategy of IoT(Internet of Things) based satellite early warning system(SEWS) for plants and animals as a subsystem of national disaster response and management system is being required, where the forensic technology & measures should be applied as a government policy to estimate the post compensation and to carry out the legal responsibility.

  • PDF

Evaluation of different molecular methods for detection of Senecavirus A and the result of the antigen surveillance in Korea during 2018

  • Heo, JinHwa;Lee, Min-Jung;Kim, HyunJoo;Lee, SuKyung;Choi, Jida;Kang, Hae-Eun;Nam, Hyang-Mi;Nah, JinJu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Senecavirus A (SVA), previously known as Seneca Valley virus, can cause vesicular disease and neonatal losses in pigs that is clinically indistinguishable from foot-and-mouth disease virus (FMDV). After the first case report in Canada in 2007, it had been restrictively identified in North America including United States. But, since 2015, SVA emerged outside North America in Brazil, and also in several the Asian countries including China, Thailand, and Vietnam. Considering the SVA occurrence in neighboring countries, there has been a high risk that Korea can be introduced at any time. In particular, it is very important in terms of differential diagnosis in the suspected case of vesicular diseases in countries where FMD is occurring. So far, several different molecular detection methods for SVV have been published but not validated as the reference method, yet. In this study, seven different molecular methods for detecting SVA were evaluated. Among them, the method by Flowler et al, (2017) targeted to 3D gene region with the highest sensitivity and no cross reaction with other vesicular disease agents including FMDV, VSV and SVD, was selected and applied further to antigen surveillance of SVA. A total of 245 samples of 157 pigs from 61 farms submitted for animal disease diagnose nationwide during 2018 were tested all negative. In 2018, no sign of SVA occurrence have been confirmed in Korea, but the results of the surveillance for SVA needs to be continued and accumulated at a high risk of SVA in neighboring countries.

Study on the sterilizing and disinfective effects of E-ball and commercialized disinfectants against Salmonella typhimurium (Salmonella typhimurium 에 대한 E-ball 및 상용화된 소독약품의 살균 및 소독 효능에 대한 연구)

  • Kang, Shin-Seok;Byeon, Hyeon-Seop;Kang, Shin-Kwon;Ko, Duk-Hwan;Lim, Dae-Jun;Lee, Jung-Hwa;Jeon, Hyun-Soo;Choi, Jin-Yong;Kang, Sung-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.4
    • /
    • pp.211-220
    • /
    • 2015
  • Many chemical disinfectants are using to protect the foot and mouth disease (FMD) and avian influenza (AI) in Korea since 2000. This study was performed to confirm disinfective ability of commercialized chemical disinfectants and to investigate the sterilizing ability of E-ball as alterative to chemical disinfectants. 4 kinds of acidulant, 3 kinds of aldehyde, 1 kind of oxidizer and 300 g of E-ball were used in this study. Dilution rate of disinfective power of all chemical disinfectants were to 200 times. The sterilizing ability of aldehydes were better than the acidulant and oxidizer with Salmonella typhimurium. The sterilizing ability of E-ball treated solution was guessed due to the friction of E-ball deads. In the case of the friction of 2 beads of E-ball, Salmonella typhimurium was sterilizted on $1{\times}10^6/mL$ CFU in the E-ball treated solution. The E-ball treated solution had superior sterizing power compared with the chemical disinfectants in the bacteria of soil for antibacterial examination. E-ball treated solution has a possibility as the substitute of chemical disinfectants to protective the animal diseases contains FMD, AI.

The Design and Implementation of a Real-Time FMD Cattle Burial Sites Monitoring System Based-on Wireless Environmental Sensors (u-EMS : 센서네트워크 기반의 가축매몰지 악취환경정보 실시간 모니터링 시스템 설계 및 구현)

  • Moon, Seung-Jin;Kim, Hong-Gyu;Park, Kyu-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1708-1721
    • /
    • 2011
  • Recent outbreak of cattle diseases such as foot-and-mouth disease(FMD) requires constant monitoring of burial sites of mass cull of cattles. However, current monitoring system takes environmental samples from burial sites with period of between one and two weeks, which makes it impossible for non-stop management of hazardous bio-waste. Therefore, in this study, we suggest an improved real-time environmental monitoring system for such bio-hazardous sites based on wireless sensor networks, which makes constant surveillance of the FMD burial sites possible. The system consists mainly several wireless environmental monitoring sensors(i.e dust, Co2, VOC, NH3, H2S, temperature, humidity) nodes and GPS location tracking nodes. Through analysis of the relayed of the environmental monitoring data via gateway, the system makes it possible for constant monitoring and quick response for emergency situation of the burial sites. In order to test the effectiveness of the system, we have installed a set of sensor to gas outlets of the burial sites, then collected and analyzed measured bio-sensing data. We have conducted simulated emergency test runs and was able to detect and monitor the foul smell constantly. With our study, we confirm that the preventive measures and quick response of bio environmental accident are possible with the help of a real-time environmental monitoring system.

Relationship Between Degree Centrality of Livestock Facilities in Vehicle Movement Network and Outbreak of Animal Infectious Disease (차량이동 네트워크에서의 축산시설 연결중심성과 가축 전염병 발생 사이의 관계)

  • Lee, Gyoung-Ju;Pak, Son-Il;Lee, Kwang-Nyeong;Kim, Han-Yee;Park, Jin-Ho;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.353-362
    • /
    • 2018
  • The national loss caused by the periodic livestock epidemic is very large. In addition, vehicle movement is the main cause of livestock epidemics in Korea. In this context, this study analyzed the relationship between the degree centrality of livestock facilities and the outbreak of infectious diseases. For this purpose, a livestock vehicle movement network was constructed using the facility entrance data provided by KAHIS. Afterwards, the centrality index was derived for each facility in the vehicle movement network and the mean centrality index of the epidemic and non-epidemic facilities were compared. The analysis results are summarized as follows. First, the degree centrality of epidemic facilities is significantly greater than non-epidemic facilities. As a result of the analysis of the entire period data and the period-based data, in most data, the degree centrality of facilities where livestock infectious diseases occurred was significantly greater than most non-occurrence facilities. Second, in the entire period data, the difference in degree centrality between the epidemic and non-epidemic facilities was smaller for HPAI than for FMD. On the other hand, no significant difference was found in the results of the analysis according to the divided period. The policy implications of the results are as follows. First, proactive management of facilities based on centrality is needed. Second, in the case of cloven-hoofed animal facilities, it is more urgent to introduce a management policy based on the degree centrality.

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

Predicting Common Patterns of Livestock-Vehicle Movement Using GPS and GIS: A Case Study on Jeju Island, South Korea

  • Qasim, Waqas;Cho, Jea Min;Moon, Byeong Eun;Basak, Jayanta Kumar;Kahn, Fawad;Okyere, Frank Gyan;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.247-254
    • /
    • 2018
  • Purpose: Although previous studies have performed on-farm evaluations for the control of airborne diseases such as foot-and-mouth disease (FMD) and influenza, disease control during the process of livestock and manure transportation has not been investigated thoroughly. The objective of this study is to predict common patterns of livestock-vehicle movement. Methods: Global positioning system (GPS) data collected during 2012 and 2013 from livestock vehicles on Jeju Island, South Korea, were analyzed. The GPS data included the coordinates of moving vehicles according to the time and date as well as the locations of livestock farms and manure-keeping sites. Data from 2012 were added to Esri software ArcGIS 10.1 and two approaches were adopted for predicting common vehicle-movement patterns, i.e., point-density and Euclidean-distance tools. To compare the predicted patterns with actual patterns for 2013, the same analysis was performed on the actual data. Results: When the manure-keeping sites and livestock farms were the same in both years, the common patterns of 2012 and 2013 were similar; however, differences arose in the patterns when these sites were changed. By using the point-density tool and Euclidean-distance tool, the average similarity between the predicted and actual common patterns for the three vehicles was 80% and 72%, respectively. Conclusions: From this analysis, we can determine common patterns of livestock vehicles using previous year's data. In the future, to obtain more accurate results and to devise a model for predicting patterns of vehicle movement, more dependent and independent variables will be considered.

Physicochemical Changes of Swine Manure by the Treatment of Acid and Alkali for Inactivation of Pathogenic Microorganisms (병원성미생물의 불활성화를 위한 산·알칼리처리가 양돈분뇨의 이화학적 성상에 미치는 영향)

  • Kim, Cho-Long;Kim, Soo-Ryang;Kim, Ha-Je;Jeon, Sang-Joon;Han, Ho;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.229-234
    • /
    • 2012
  • Disinfecting contaminated swine manure with FMD (Foot-and-Mouth Disease) and pathogenic viruses is very important for maintaining sanitized environment. However, very few research reported on this subject, especially post-disinfection to utilize the wastes as a renewable resource. This research is carried out to obtain basic information for chemical treatment in FMD SOP (Standard Operating Procedure, Korea) of contaminated swine manure. Using lime, sodium hydroxide, citric acid and hydrochloric acid, described in FMD SOP, the effects of chemical treatments on livestock manure were compared in this paper. Four combinations of alkali-acid treatments and four kinds of acid-alkali combinations were tested to find out the effective method. Total coliform bacteria in contaminated swine manure, $1.6{\times}10^4$ CFU/100 ml, decreased to the range of 1/1000~1/100 in all treatments. Some specific disinfectants increases BOD (Biochemical Oxygen Demand) and EC(Electric Conductivity), especially, alkaline treatments increases ammonia level than acid treatments. These findings suggest that the treatment methods should be considered as an important environmental factor in post-disinfection of contaminated animal manure with pathogenic microorganisms.

Selection of Optimal Degradation Agents for Hydrolysis of Animal Cadavers (폐가축사체 가수분해를 위한 최적 가수분해제 선정)

  • Seo, Young-Jin;Seo, Dong-Cheol;Choi, Ik-Won;Kang, Se-Won;Lee, Sang-Gyu;Sung, Hwan-Hoo;Kim, Tae-Seung;Kim, Hyun-Goo;Park, Sun-Hwa;Kang, Seok-Jin;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.241-247
    • /
    • 2012
  • Many infectious diseases have emerged or re-emerged during the past 50 years in South Korea. There were three outbreaks of foot and mouth disease (FMD) in South Korea between January 2010 and March 2011. Over 3.45 million animals were slaughtered (33.3% of the existing pigs, 8.4% of dairy cows and 3.4% of cattle). To select optimal degradation agents of animal cadavers, degradation rates and fertilizer components of pig cadavers were investigated using hydrogen chloride (HCl), potassium hydroxide (KOH) and sodium hydroxide (NaOH) hydrolysis methods. Degradation rates of pig cadavers using HCl, KOH and NaOH were 81.1, 82.8 and 91.6%, respectively. Total nitrogen (T-N) concentration in degradation solution of pig cadavers using KOH hydrolysis method was higher than that in NaOH and HCl hydrolysis methods. Total phosphorus ($P_2O_5$) concentrations in degradation solution of pig cadavers in all hydrolysis methods ranged 0.14 ~ 0.28%. Total potassium ($K_2O$) concentration for KOH hydrolysis method was higher than that for other hydrolysis methods. The concentration of T-N and $K_2O$ in degradation solution of pig cadavers by KOH hydrolysis method were higher than that in NaOH and HCl hydrolysis methods. Thus, to recycle animal cadavers in agriculture, the optimal degradation agent for hydrolysis was KOH.