• Title/Summary/Keyword: Foot sensor

Search Result 140, Processing Time 0.022 seconds

A Design of Digital Inclinometer for Measuring Postural Balance (Preliminary Study) (자세 균형 측정을 위한 디지털 경사계 설계)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Lee, Kyoung-Joung;Kwon, Oh-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.238-240
    • /
    • 2006
  • In this study, we designed a digital inclinometer to measure the angle and acceleration signals. Digital inclinometer consists of a tilt sensor, accelerometer, one-chip micro controller and BlueTooth module. Using the developed system, we made an experiment with Roll. The subject is laid on the Roll and rises each foot $90^{\circ}$ and $45^{\circ}$ up, and measures angle and acceleration signals with 100Hz sampling frequency. Through several tests, we could find the possibilities and usefulness which can evaluate normality / abnormality of body posture objectively.

  • PDF

Step Length Estimation Algorithm for Firefighter using Linear Calibration (선형 보정을 이용한 구난요원의 보폭 추정 알고리즘)

  • Lee, Min Su;Ju, Ho Jin;Park, Chan Gook;Heo, Moonbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.640-645
    • /
    • 2013
  • This paper presents a step length estimation algorithm for Pedestrian Dead Reckoning using linear calibrated ZUPT (zero velocity update) with a foot mounted IMU. The IMU consists of 3 axis accelerometer, gyro and magnetometer. Attitude of IMU is estimated using an inertial navigation algorithm. To increase accuracy of step length estimation algorithm, we propose a stance detection algorithm and an enhanced ZUPT. The enhanced ZUPT calculates firefighter's step length considering velocity error caused by sensor bias during one step. This algorithm also works efficiently at various motions, such as crawling, sideways and stair stepping. Through experiments, the step length estimation performance of the proposed algorithm is verified.

Detection of spatia-temporal gait parameter for hemiplegic patients based on an accelerometer and footswitches (Preliminary study) (체중심 가속도와 풋스위치를 이용한 편마비 환자의 시공간 보행인자 검출)

  • Lee, Hyo-Ki;Lee, Kyoung-Joung;Kim, Young-Ho;Park, Si-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.542-544
    • /
    • 2005
  • This paper describes the detection of spatio-temporal parameter using an accelerometer and footswitches to evaluate a symmetry and balance of hemiplegic patients. We detected gait data using a 3-axis accelerometer that mounted between L3 and IA intervertebral area and footswitches made by FSR-Sensor attached insole. To minimize the error of the gait parameters to be detected incorrectly in case of using only accelerometer, we enhancement the performance of detection by measuring an accelerometer and foots witches data at the same time. So, it was possible to detect more accurate gait parameters. As a result, we can confirm the symmetry and balance of hemiplegic patients. In the future. these results could be used to evaluate the walking ability in hemiplegic patients in clinical pratice.

  • PDF

Center of Pressure of a Human Body using Force Sensing Resistor (Force Sensing Resistor를 이용한 인체압력중심 변화 분석)

  • Park, Cheol;Park, Shinsuk;Kim, Choong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1722-1725
    • /
    • 2014
  • An experimental investigation of COP(center of pressure) was performed using FSR(force sensing resistor) and force plate. The FSR sensor system is used as effective device to detect the movement of human body in activities of daily living. It has been shown that the FSR provides the trajectories of COP with repeatability and reliability.

Humidity-Sensing Properties of RF Sputtered Vanadium Oxide Thin Films (RF 스퍼터된 바나듐 산화막의 습도 감지 특성)

  • Choi, Bok-Gil;Choi, Chang-Kyu;Kim, Sung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.475-480
    • /
    • 2006
  • Vanadium oxide thin films (VOx) have been deposited by RF magnetron sputtering from $V_2O_5$ target under different oxygen partial pressure ratios(0%, 10%) and substrate temperatures$(27^{\circ}C,\;400^{\circ}C)$. Crystallographic structure and morphology of the films are studied by XRD and SEM. Humidity-sensing properties of resistive sensors having interdigitated electrode structure are characterized through electrical conduction measurements. The films deposited at room temperature are amorphous whereas the ones deposited above foot are polycrystalline. The sensors show good response to humidity over 20%RH to 80%RH. Vanadium oxide thin films deposited with $0%O_2$ partial pressure at $400^{\circ}C$ exhibit greater sensitivity to humidity change than others.

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

Effect of Treadmill Walking Training using the Metronome on Gait Pattern (메트로놈을 이용한 트레드밀 보행훈련이 보행패턴에 미치는 영향)

  • Yoon, Won-Chan;Park, Sun-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2020
  • PURPOSE: The purpose of this study was to investigate the effect of treadmill walking training using the metronome on the gait pattern. METHODS: A total of 33 healthy persons were studied consisting of 17 female and 16 male in the 20-30 age group. A gait analysis program was installed on a treadmill with a built - in gait analysis sensor and laptop. After 9 minutes of treadmill walking, gait analysis was performed for 1 minute. The mean values of the differences in the step length, angle of COP, separation line standard deviation and step force of the lower legs affecting walking symmetry were calculated for treadmill walking and treadmill walking using the metronome. The Shapiro-Wilk test was used to test the normality of the collected data and a paired t-test was performed to analyze the difference in walking before and after using the metronome. RESULTS: As a result of the analysis, the mean of difference between the measured values of the bilateral lower extremity for step length, angle of COP, separation line standard deviation and step force were statistically significant before and after treadmill walking using the metronome. CONCLUSION: Therefore, the treadmill walking training using the metronome is effective in decreasing the difference in the foot width, gait angle, gait distribution, and foot pressure. Because of this, the treadmill walking training using the metronome has a significant effect on walking symmetry among the elements for correct walking, which is a means for enabling efficient and continuous walking.

The change of ankle of plantar pressure and range of motion joint according to treadmill gradients (트레드밀보행 시 경사도에 따른 족저압과 발목관절의 관절가동범위의 변화)

  • Kim, Tae-Ho;Kim, Byoung-Gon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate the change of the peak plantar pressure distribution under the foot areas and the range of motion (ROM) of ankle joint according to gradients in treadmill gait. Method : Thirty normal subjects (15 male and 15 female) walked on treadmill at three gradient conditions ($0^{\circ}$, $10^{\circ}$, and $15^{\circ}$) in normal speed. The ankle ROM was measured using the CMS70P that is three dimensional analyzer for excursion of ankle ROM, plantar flexion, and dorsi flexion. The peak plantar pressure distribution under the hallux, 1st metatarsal head (MTH) and heel was measured using the F -Scan system with an in-shoe sensor. Data was collected from 9 steps of left sife foot in at each gradient condition while all subjects walked. Result : As the treadmill gradient increased, the excursion of ankle joint was significantly increased (p<.05). Also, plantar flexion and dorsi flexion was significantly increased according to treadmill gradients (p<.05). The peak plantar pressure under the 1st MTH was significantly increased (p<.05) and the peak plantar pressure under the heel was significantly decreased (p<.05) as the treadmill gradient increased. No significant different in the peak plantar pressure under the hallux was observed. Conclusion : This study suggests that physical therapy for patients who have limited ankle ROM should be considered sufficient range of motion for functional ambulation. And individuals that have painful forefoot syndromes, including metatarsalgia, hallux valgus, and plantar ulceration should be careful in walking to uphill, as there is high plantar pressure under the forefoot.

  • PDF

Telemedicine System for Korean Beef Cattle Converging Livestock Farming Practices & ICT (축산분야와 ICT 융합을 통한 한우 원격진료방안)

  • Koo, Jee-Hee;Lee, Sang-Rak
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.217-224
    • /
    • 2016
  • As livestock diseases such as foot-and-mouth disease are highly infectious and likely to inflict nationwide damage, it is important to detect such diseases in advance. Infection of foot-and-mouth disease is determined in the field through examination of external symptoms such as rise in body temperature. However, as the disease is carried around initially by travelling veterinarians in some cases, it is critical to measure the body temperature of livestock to detect abnormal temperature pattern early on and transmit temperature reading data remotely to a veterinarian remotely to expedite decision. In this study, we have developed a telemedicine system designed to connect veterinarians and livestock farmers and measure the body temperature of Korean beef cattle with IR sensor module linked to ubiquitous ICT platform as a solution for controlling health conditions of Korean beef cattle and improving the efficiency of livestock farming operations at individual farm, regional, and national level by converging ubiquitous ICT platform and livestock farming practices. Successfully employing the state-of-the-art IT technologies of Korea, the system proposed herein is expected to make Korea's livestock farming industry more sustainable and help the nation to secure technological preeminence in the global livestock products market.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.