• Title/Summary/Keyword: Foot Pressure Distribution

Search Result 138, Processing Time 0.03 seconds

Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot (등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과)

  • Lee, Ki-Kwang;Choi, Chi-Sun;Eun, Seon-Deok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

The change of ankle of plantar pressure and range of motion joint according to treadmill gradients (트레드밀보행 시 경사도에 따른 족저압과 발목관절의 관절가동범위의 변화)

  • Kim, Tae-Ho;Kim, Byoung-Gon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose : The purpose of this study was to investigate the change of the peak plantar pressure distribution under the foot areas and the range of motion (ROM) of ankle joint according to gradients in treadmill gait. Method : Thirty normal subjects (15 male and 15 female) walked on treadmill at three gradient conditions ($0^{\circ}$, $10^{\circ}$, and $15^{\circ}$) in normal speed. The ankle ROM was measured using the CMS70P that is three dimensional analyzer for excursion of ankle ROM, plantar flexion, and dorsi flexion. The peak plantar pressure distribution under the hallux, 1st metatarsal head (MTH) and heel was measured using the F -Scan system with an in-shoe sensor. Data was collected from 9 steps of left sife foot in at each gradient condition while all subjects walked. Result : As the treadmill gradient increased, the excursion of ankle joint was significantly increased (p<.05). Also, plantar flexion and dorsi flexion was significantly increased according to treadmill gradients (p<.05). The peak plantar pressure under the 1st MTH was significantly increased (p<.05) and the peak plantar pressure under the heel was significantly decreased (p<.05) as the treadmill gradient increased. No significant different in the peak plantar pressure under the hallux was observed. Conclusion : This study suggests that physical therapy for patients who have limited ankle ROM should be considered sufficient range of motion for functional ambulation. And individuals that have painful forefoot syndromes, including metatarsalgia, hallux valgus, and plantar ulceration should be careful in walking to uphill, as there is high plantar pressure under the forefoot.

  • PDF

Changes in Plantar Pressure and Gait Characteristics in Adults with Asymptomatic Flexible Pes Planus by Different Taping (테이핑 방법에 따른 유연성 평발의 족저압 및 보행 특성 변화)

  • Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • Purpose: Pes planus is a common foot deformity that involves the loss of the medial longitudinal arch. The medial longitudinal arch deformity is usually asymptomatic; however, it can lead to an increased risk of pain and injury. Low-Dye taping is designed to treat plantar heel pain and pes planus. However, low-Dye taping is relatively complex, and a considerable amount of time is required to apply the tape correctly. The purpose of this study was to compare the acute effect of two different types of taping (low-Dye taping and modified Mulligan taping) on arch reformation, plantar pressure, and gait characteristics in participants with asymptomatic flexible pes planus. Methods: Twenty subjects (9 males and 11 females; mean age = 21.95 years) with asymptomatic flexible pes planus voluntarily participated in this study. Arch reformation was evaluated using navicular height measurements. Changes in plantar pressure distribution were measured using BioRecue equipment. Gait parameters were measured using spatiotemporal data collected during consecutive gait cycles using a G-WALK device. One-way analysis of variance was used to compare the three different conditions (i.e., bare foot, low-Dye taping, and modified Mulligan taping) for each variable. Results: Navicular height was significantly increased in subjects who underwent the two types of taping compared to those who experienced the bare foot condition. The plantar pressure was significantly shifted to the posterolateral area after modified Mulligan taping compared with the bare foot condition. There were no significant differences in the gait parameters. Conclusion: The findings of this study indicate that modified Mulligan taping has a similar effect to low-Dye taping, and modified Mulligan taping is a simpler method than low-Dye taping.

The Effects of Visual Biofeedback Information on Hyperextended Knee Control

  • Jung, Sung-hoon;Jeon, In-cheol;Ha, Sung-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Purpose: A hyperextended knee is described as knee pain associated with an impaired knee extensor mechanism. Additionally, a hyperextended knee may involve reduced position sense of the knee joint that decreases the individual's ability to control end-range knee extension movement. The purpose of this study was to investigate the effects of visual biofeedback information for plantar pressure distribution on knee joint angle and lower extremity muscle activities in participants with hyperextended knees. Methods: Twenty-three participants with hyperextended knees were recruited for the study. Surface electromyography signals were recorded for the biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior muscle activities. The plantar pressure distribution was displayed and measured using a pressure distribution measuring plate. Knee joint angle kinematic parameters were recorded using a motion analysis system. The visual biofeedback condition was the point at which the difference between the forefoot and backfoot plantar foot pressure on the monitor was minimized. The Wilcoxon signed-rank test was used to determine the significance between the visual biofeedback condition and the preferred condition. Results: The knee joint angle was significantly decreased in the visual biofeedback condition compared to that in the preferred condition (p<0.05). The rectus femoris and gastrocnemius muscle activities were significantly different between the visual biofeedback and preferred conditions (p<0.05). Conclusion: The results of this study showed that visual biofeedback of information about plantar pressure distribution is effective for correcting hyperextended knees.

A Study of the Correlation between Plantar Pressure and Obses Index in obses women. (비만인의 족저부 압력 분포 차이와 비만지표와의 상관성 연구)

  • Soh, Mun-Gie;Lim, Hyung-Ho;Song, Yun-Kyung
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.2 no.1
    • /
    • pp.115-125
    • /
    • 2007
  • Objectives : The limited number of studies to date have mainly focused on the effect of obesity on the characteristics of plantar foot pressures. This study is designed to find the correlation between plantar pressure and obese index. Methods : This study assessed the body composition of 30 obese women using bioelectrical impidence analysis and Gaitview AFA-50. The static and dynamic plantar pressure was determined from electronic footprints captured using a capacitive pressure distribution platform during standing and walking. The data were analysed by independent t-test and Pearson Correlation. Results : Positive correlations were noted between body weight, body mass index(BMI), waist circumference(WC), waist-hip ratio(WHR) and difference of fore and rear plantar pressure. And negative correlations were noted between body weight, BMI, WC, WHR and difference of left and right plantar pressure. Conclusions : The findings of this pilot study suggest that body composition influences the waight distribution in overweight and obese subjects.

  • PDF

A Study on Weight Transfer Sidehill Slopes during Goal Impact : Especially sidehill Slopes with ball above the feet (측면경사면에서의 목표 타격시 체중이동에 관한 연구 : 오르막경사를 중심으로)

  • Lee, Eui-Lin;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Among several movements that occurred upon a slope, golf swing is the most typical one because environmental conditions dynamically vary with many kinds of slopes. Some studies on the golf swing were performed about a weight transfer on flatland, however, there couldn't be seen any study about the weight transfer on slope elsewhere. Therefore, the purpose of this study was to provide quantified data to objectively test the coaching words and keys about the weight transfer at sidehill slope during goal impact EspeciaIly sidehill Slopes with ball above the feet. Four highschool golfer, who have average handy 5, were recruited for this study. Plantar pressure distribution and cinematographic data were collected during golf swing in the conditions of flatland, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$sidehill slope simultaneously. The two data were used to synchronize the two data later. The plantar regions under the foot were divided into 8 regions according to the directly applied pressure pattern of the subject to insole sensor. The 8 foot regions were hullux, medial forefoot, central forefoot, lateral forefoot, medial midfoot, lateral midfoot, medial heel, and lateral heel. And the plantar pressure data was also divided into four movement address, phases-backswing. downswing, and follow-through phases according to the percentage shown to the visual information of film data. Based on the investigations on public golf books and experiences of golfers, it was hypothesized by the authors in the early of this study that the steeper slopes are, the more weight loads on left foot that positions at the higher place. When observing the results of plantar pressure and vertical force curves according to the sidehill slope conditions, the hypothesis could be accepted.

Effects of walking speed on peak plantar pressure in healthy subjects (정상인에서 보행 속도가 발바닥의 최대압력분포에 미치는 영향)

  • Ha, Mi-Sook;Nam, Kun-Woo
    • Journal of Korean Physical Therapy Science
    • /
    • v.22 no.2
    • /
    • pp.43-47
    • /
    • 2015
  • Background : Many factors affect foot and ankle biomechanics during walking, including gait speed and anthropometric characteristics. This study examined the effect of walking speed on peak plantar pressure during the walking. Method : Thirty two normal healthy subjects (16 men, 16 women) were recruited. Peak plantar pressure was investigated using pressure distribution platforms (Pedoscan system) under the hallux heads of the first, second, and third metatarsal bones, and heel. Result : The results also suggest that slow walking speeds may decrease forefoot peak plantar pressure in patients with peripheral neuropathy who have a high risk of skin breakdown under the forefoot(p<0.05). Conclusion : The results also suggest that slow walking speeds may decrease forefoot peak plantar pressure in patients with restricted low extremity range of motion who have a high risk of skin breakdown under the forefoot.

  • PDF

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System (동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가)

  • Song, Seong Mi;Yu, Chang Ho;Kim, Kyung;Kim, Jae Jun;Song, Won Kyung;Hong, Chul Un;Kwon, Tae Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.

A Comparative Analysis on Changes of Foot Pressure by Shoe Heel Height during Walking (하이힐 굽 높이에 따른 보행 시 족저압 변화 비교 분석)

  • Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.771-778
    • /
    • 2009
  • We aimed to determine the effect of heel height on foot pressure by comparing and analyzing data on foot pressure in shoes with different heel heights. Qn the basis of a previous study, we selected 3cm and 7cm as the shoe heel heights preferred by female college students. We divided 10 female students into forefoot and hindfoot to measure vertical force, maximum pressure, and average pressure. The average pressure on the forefoot was higher and that on the hindfoot was lower in the case of 7cm high-heeled shoes. The maximum pressure on the forefoot was significantly higher in the case of the 7cm heel height (p<.05). The vertical force, maximum pressure, and average pressure on the hindfoot were also significantly higher in the case of the 7cm heel height (p<.05). The results showed that wearing 7cm high-heeled shoes exerted greater maximum pressure on the forefoot and greater vertical force, maximum pressure, and average pressure on the Hndfoot. This leads to increase in confining pressure caused by high pressure distribution over the forefoot and increase in the pressure on the hindfoot, which may cause deformation of toes and heel pain over a long period. Therefore, female college students who wish to wear high heels are recommended to wear 3cm high-heeled shoes rather than 7cm high-heeled shoes.

A Study of Characteristics of Foot Pressure Distribution in Trans-tibial Amputee Subjects (하퇴 의지 사용자의 족저압 분포 특성에 관한 연구)

  • Kim, Jang-Hwan;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to compare the static pressure, dynamic pressure, dynamic pressure-time integral, relative impulse, and contact time between the sound lower limb and amputated lower limb in trans-tibial amputee subjects using Parotec system. Seventeen trans-tibial amputee subjects wearing endoskeletal trans-tibial prosthesis voluntarily participated in this study. The results were as follows: 1) In static standing condition, there were significantly higher static pressure in sound lower limb insole sensor of 10, 14, 15, 18, 19, 23, and 24 and in amputated lower limb insole sensor of 9, 12, and 16 (p<.05). 2) In dynamic gait condition, there were significantly higher dynamic pressure in sound lower limb insole sensor of 2, 18, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, 14, 15, and 16 (p<.05). 3) In dynamic gait condition, there were significantly higher pressure-time integral in sound lower limb insole sensor of 2, 4, 18, 19, 20, 21, 23, and 24 and in amputated lower limb insole sensor of 5, 11, 12, and 15 (p<.05). 4) In dynamic gait condition, there were significantly higher relative impulse in sound lower limb insole sensor of 18, 19, 20, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, and 15 (p<.05). 5) In dynamic gait condition, there was significantly higher percentage of contact time in push off phase of sound lower limb and in support phase of amputated lower limb (p<.05). These results suggest that trans-tibial amputee subjects had characteristics of shortened push off phase due to unutilized forefoot and of lengthened support phase with higher pressure in the midfoot.

  • PDF