• Title/Summary/Keyword: Foot Moving

Search Result 71, Processing Time 0.025 seconds

The Sensory-Motor Fusion System for Object Tracking (이동 물체를 추적하기 위한 감각 운동 융합 시스템 설계)

  • Lee, Sang-Hee;Wee, Jae-Woo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.181-187
    • /
    • 2003
  • For the moving objects with environmental sensors such as object tracking moving robot with audio and video sensors, environmental information acquired from sensors keep changing according to movements of objects. In such case, due to lack of adaptability and system complexity, conventional control schemes show limitations on control performance, and therefore, sensory-motor systems, which can intuitively respond to various types of environmental information, are desirable. And also, to improve the system robustness, it is desirable to fuse more than two types of sensory information simultaneously. In this paper, based on Braitenberg's model, we propose a sensory-motor based fusion system, which can trace the moving objects adaptively to environmental changes. With the nature of direct connecting structure, sensory-motor based fusion system can control each motor simultaneously, and the neural networks are used to fuse information from various types of sensors. And also, even if the system receives noisy information from one sensor, the system still robustly works with information from other sensors which compensates the noisy information through sensor fusion. In order to examine the performance, sensory-motor based fusion model is applied to object-tracking four-foot robot equipped with audio and video sensors. The experimental results show that the sensory-motor based fusion system can tract moving objects robustly with simpler control mechanism than model-based control approaches.

The Research on Functional Midsole that can Minimize Forefoot Pressure - Focusing on High-Heeled Pumps Type - (전족부 압력을 최소화할 수 있는 기능성 중창에 관한 연구 - 굽높은 펌프스형을 중심으로 -)

  • Kim, Dong-Yeoub;Choi, Soon-Bok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.2 s.161
    • /
    • pp.258-268
    • /
    • 2007
  • The purpose of this research is to develop functional midsole that can restrain the heightening of plantar pressure in forefoot pressure so as to develop high-heeled shoes that can lessen foot ailments among women. The pumps shoes used for the research were of the same pumps type last. The variant was heel height, 3cm, 6cm, and 9cm, and the shoes were made in both normal midsole and functional midsole. The variant was applied to investigate the changes of foot pressure on forefoot and hindfoot according to heel height.'Heel Cup' was chosen for modification of functional midsolepumps type. to enlarge contact area in hindfoot, and 'Heel Posting Pad' was attached under sustentaculum tali to suppress the weight moving to forefoot pressure. If such functional parts are developed and used, it is possible to lessen the amount of Pmax or Impulse imposed by high-heeled pumps type on forefoot pressure. This can greatly lessen foot ailments, largely caused by high-heeled shoes, among women.

Correction of Hook Nail Deformity with Composite Graft (복합조직이식을 이용한 갈고리 손톱 변형 교정의 임상례)

  • Son, Dae Gu;Sohn, Hyung Bin;Kim, Hyun Ji
    • Archives of Plastic Surgery
    • /
    • v.34 no.3
    • /
    • pp.377-382
    • /
    • 2007
  • Purpose: Hook nail deformity is caused by inadequately supported nail bed due to loss of distal phalanx or lack of soft tissue, resulting in a claw-like nail form. A composite graft from the foot bencath the nail bed gives adequate restoration of tip pulp. Methods: From September of 1999 to March of 2004, six patients were treated for hook nail deformity and monitored for long term follow up. Donor sites were the lateral side of the big toe or instep area of the foot. We examined cosmetic appearance and nail hooking and sensory test. The curved nail was measured by the picture of before and after surgery. Results: In all cases, composite grafts were well taken, and hook nail deformities were corrected. The curved nail of the 4 patients after surgery were improved to average $28.7^{\circ}$ from average $55.2^{\circ}$ before surgery. The static two point discrimination average was 6.5mm and the moving two point discrimination average was 5.8mm in the sensory test. Conclusion: Composite graft taken from foot supports the nail bed with the tissue closely resembling the fingertip tissue, making it possible for anatomical and histological rebuilding of fingertip.

Effects of Altering Foot Position on Quadriceps Femoris Activation during Wall Squat Exercises

  • Qiao, Yong-Jun;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.23-31
    • /
    • 2021
  • PURPOSE: This study was conducted to identify the effects of altering foot position on quadriceps femoris including vastus medialis obliques (VMO), vastus lateralis (VL) and rectus femoris (RF) activation during wall squat exercises. METHODS: All subjects (n = 15) were selected and randomly performed three kinds of wall squats: 1) GWS (General Wall Squat), 2) WSS1/4 (Wall Squat Short 1/4), and 3) WSS1/2 (Wall Squat Short 1/2). Each subject completed all three kinds of wall squatting exercises at three different times and recorded the muscle activity data of vastus medialis obliques, vastus lateralis and rectus femoris. RESULTS: Compared with GWS exercise, VMO and RF muscle activity significantly increased under WSS1/2 exercise (p < .05), while only RF muscle activity significantly increased under WSS1/4 exercise (p < .05). CONCLUSION: The results of the present study indicate that moving the foot toward the wall during wall squats has a positive effect on quadriceps activation. The exercise of wall squat short can not only be used as the lower limb muscle strengthening training for normal people, but also as the recovery training for patellofemoral pain syndrome patients in the rehabilitation stage. Besides, Anterior cruciate ligament patients can also try this exercise according to the advice of doctors and therapists.

Investigation of postural sway characteristics of patients after total hip replacement (인공 고관절시술자환자의 중심동요 특성에 관한 연구)

  • 강창수;신승헌;민병우
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.87-104
    • /
    • 1995
  • This research investigates the possibility of using the postural sway of patients as a reference for measruing the progress of the disease and healing of patients who received total hip replacement; the progress of the disease by X-ray pictures, the pain felt by the patients, and the difficulties encountered in moving the joints. The measurements on the force platform were taken during a 25 second period standing on both feet and during a 5 second period standing on one foot with both eyes open. The result of the research showed that the trace and area of the overall length of postural sway was a good indicator which represented the healing progress of the patients who received total hip replacement, and the weakening of the muscles and the recovery process for 3 or 4 month after receiving the operation, which did not appear on X-ray pictures, were exhibited on the postural sway. Finally, standing on a single foot represented the healing progress much better than standing on both feet.

  • PDF

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

Design of 4 joints 3 Link Biped Robot and Its Gaits (4관절 3링크 2족 로봇과 걸음새에 관한 연구)

  • Kim, Sung-Hoon;Oh, Jun-Ho;Lee, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.523-528
    • /
    • 2000
  • In this paper, the new type biped walking robot which is composed of the minimum number or links just for walking and its appropriate gaits are proposed. The proposed new gaits for this robot are four-crossing, crawling, standing and turning gait. In designing the biped robot we propose the Performance Index which means the needed torque per a moving distance and generate foot trajectories by $3^{rd}$ order spline Interpolation. Among those, numerically we find the optimal conditions which minimize the Performance Index. Dynamically stable walking of the biped robot is realized by satisfying the stability condition of ZMP(zero moment point), which is related to maintaining the ZMP within the region of the supporting foot during the s1n91e leg support phase. We determine the region of mass center from the stability condition of ZMP and plan references which track the mass conte. trajectory of constant velocity. Finally we implement the gaits statically tracking the planned trajectories using PD control method.

  • PDF

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Dynamic Trajectory Control of a Biped Robot with Curved Soles

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • This paper proposes a desired trajectory and a control algorithm for a biped robot with curved soles. Firstly, we derived the desired trajectory from a model called the Moving Inverted Pendulum Mode (MIPM) of which a contact point of the foot is moving in the horizontal direction. A biped robot with curved soles is under-actuated system, because it has one contact point with the ground during the single supporting phase. Therefore, to solve the under-actuated problem, we changed control variables, used modified dynamic equations and used the computed torque control. The simulation results show that a biped robot with curved soles walks stably. Also, fast walking and natural motion of a biped robot can be implemented.

  • PDF

Aperiodic Gait Control based on Periodic Gait fo Teleoperation of a Quadruped Walking Robot (4족 보행로봇의 원격조종을 위한 주기 걸음새 기반의 비주기적 걸음새 제어)

  • 최명호;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.397-397
    • /
    • 2000
  • This paper presents a gait control scheme for teleoperation of a quadruped-walking robot. In teleoperation of a walking robot, an operator gives a real-time generated velocity command to a walking robot instead of a moving trajectory. When the direction of the velocity command is changed, the periodic gait is not available because this requires an initial foot position . This paper proposes the aperiodic gait control scheme that can converge to a periodic gait Simulation results are given to demonstrate the efficiency of the proposed control scheme.

  • PDF