• 제목/요약/키워드: Food wastewater treatment

검색결과 152건 처리시간 0.022초

산업공정의 폐수처리에서 발생된 폐활성슬러지 및 인공음식폐기물을 이용한 생물학적 수소생성에 관한 연구 (Study on Bio-H2 Production from Synthetic Food Waste and Activated Sludge from Industrial Waste Water Processes using Dark-fermentation)

  • 김태형;김미형;이명주;황선진;엄형춘
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.703-712
    • /
    • 2010
  • This study performed to extract operation factors of major organic wastes, which were food wastes and waste activated sludge generated in industries in order to use them as a substrate for bio-H2 production. According to the results of experimental analysis for hydrogen production capacity by various organic concentrations, the hydrogen production yield was the highest at 80 g/L, and the efficiency was improved by the pretreatment of waste activated sludge (acid treatment, alkali treatment). Hydrogen production efficiency was improved by mixing food wastes and waste activated sludge if waste activated sludge was below than 30%, however, it was decreased when it was more than 50%. The impacts of heavy metals on the hydrogen production shows that the inhibition level depends on the concentration of Cr, Zn, and Cu, Fe was able to enhance the hydrogen production.

Microbial Community of Tannery Wastewater Involved in Nitrification Revealed by Illumina MiSeq Sequencing

  • Ma, Xiaojian;Wu, Chongde;Jun, Huang;Zhou, Rongqing;Shi, Bi
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1168-1177
    • /
    • 2018
  • The aim of this study was to investigate the microbial community of three tannery wastewater treatment plants (WWTPs) involved in nitrification by Illumina MiSeq sequencing. The results showed that highly diverse communities were present in tannery wastewater. A total of six phyla, including Proteobacteria (37-41%), Bacteroidetes (6.04-16.80), Planctomycetes (3.65-16.55), Chloroflexi (2.51-11.48), Actinobacteria (1.91-9.21), and Acidobacteria (3.04-6.20), were identified as the main phyla, and Proteobacteria dominated in all the samples. Within Proteobacteria, Beta-proteobacteria was the most abundant class, with the sequence percentages ranging from 9.66% to 17.44%. Analysis of the community at the genus level suggested that Thauera, Gp4, Ignavibacterium, Phycisphaera, and Arenimonas were the core genera shared by at least two tannery WWTPs. A detailed analysis of the abundance of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) indicated that Nitrosospira, Nitrosomonas, and Nitrospira were the main AOB and NOB in tannery wastewater, respectively, which exhibited relatively high abundance in all samples. In addition, real-time quantitative PCR was conducted to validate the results by quantifying the abundance of the AOB and total bacteria, and similar results were obtained. Overall, the results presented in this study may provide new insights into our understanding of key microorganisms and the entire community of tannery wastewater and contribute to improving the nitrogen removal efficiency.

하수종말처리장 방류수를 논 관개용수로 처리시 벼 생육 및 토양환경 영향 조사 - 라이시미터 재배실험 - (Rice Growth Response and Soil Quality by Domestic Wastewater Irrigation on Rice Paddy Field - Lysimeter experiment -)

  • 조재영;박승우;손재권;박봉주;이용근
    • 농촌계획
    • /
    • 제12권2호
    • /
    • pp.49-56
    • /
    • 2006
  • The application of domestic wastewater on rice paddies results in the accumulation of sodium(Na$^+$) to the soil. Excessive concentration of sodium may cause the deterioration of the physical characteristics of the soil, change in the osmosis of the soil, destruction of soil aggregates as well as ion toxicity due to sodium accumulation. Using domestic wastewater as irrigation water should be preceded by measures to prevent or control the soil salinization caused by sodium. Agricultural reuse of domestic wastewater were found not to cause serious problems with food safety due to heavy metals. However, pre-treatment using ultraviolet or ozone is recommended to reduce the number of bacteria and gem and for public health reasons. Using domestic wastewater has shown that reducing the standard application of chemical fertilizers by as much as 50% reduced the harvesting index by only 10%. This study has shown that it is feasible to reuse domestic wastewater on rice paddies. In order to facilitate the application, it is deemed necessary to establish wastewater treatment technologies in the future, to review criteria for recycling domestic wastewater for agricultural purposes such as conditions of soil and cropping system and to resolve conflicts with farmers and public health issues.

공정부산물이 음식물쓰레기 처리비용에 미치는 영향 분석 (Effect of Process By-products on Food Wastes Treatment Costs)

  • 유기영;이소라
    • 유기물자원화
    • /
    • 제10권3호
    • /
    • pp.110-116
    • /
    • 2002
  • 음식물쓰레기를 처리하는 과정에서 발생하는 이물질이나 오폐수 등이 적절하게 처리되지 않아 주변 환경을 오염시키는 사례들이 발생하고 있어서 본 연구에서는 공정부산물의 처리가 음식물쓰레기의 처리비용에 미치는 영향을 분석하였다. 비용을 분석하기 위해 전력사용량, 오폐수발생량 등을 조사하고 1일 50톤 처리용량에서 처리비용을 분석하였다. 총처리비에서 공정부산물의 처리비가 차지하는 비중은 하수병합, 혐기성퇴비화, 건식사료화 등 공정부산물의 발생이 많은 방법들은 14~39%, 호기성퇴비화, 습식발효사료화, 습식파쇄사료화 등 공정부산물의 발생이 적은 방법은 5~11%의 범위를 보였다. 따라서 공정부산물의 발생이 많은 처리방법일수록 그에 소요되는 비용을 충분히 수수료에 반영하거나 하수처리장과 매립지 등을 저가로 활용하게 하여 공정부산물의 부적절한 처리를 예방할 필요가 있다고 판단되었다.

  • PDF

Ultra High Rate(UHR) 법의 처리특성 및 설계에 관한 연구 (A Study on Treatment Characteristics and Design of Ultra High Rate Method)

  • 이정수
    • 대한환경공학회지
    • /
    • 제22권12호
    • /
    • pp.2239-2245
    • /
    • 2000
  • 현대와 같이 대량의 폐수가 유출되는 시점에서 처리는 재이용을 고려한 질적 개념과 양적 개념을 고려해야 한다. 양적 개념을 고려할 경우, 고율법(high rate aeration)은 현재까지 알려진 공법 중 가장 효과적인 공법으로 알려져 있으나, 이는 처리량이나 처리속도 면에서 고율법을 능가하는 UHR(ultra high rate) 공법을 제시한 바 있다. 따라서 본 연구는 이미 이 가 밝힌 UHR법의 적용부하, 적용농도 등 기초적 설계범위 및 처리특성을 밝히기 위해 실행되었다. 실험 결과 본법의 적용 가능부하는 $2.2{\sim}7.0kg-BOD_5/kg-MLSS{\cdot}day$로 고율법의 최대 적용부하인 $2.25kg-BOD_5/kg-MLSS{\cdot}day$을 3배 이상 초과하였다. 또한 유입수 농도 200에서 450 mg/L범위에서 처리율은 94.7~97.3%로 매우 양호한 결과를 보였다. 따라서 처리의 양적 개념에서 볼 때 기존의 어떤 처리법보다 UHR법은 매우 획기적인 처리법으로 고려된다.

  • PDF

Box-Behnken 및 반응표면 분석법을 이용한 음식물류 폐수 부상 스컴의 혐기성 소화를 위한 열-알칼리 전처리 최적화 (Optimization of Thermal-alkaline Pre-treatment for Anaerobic Digestion of Flotation Scum in Food Waste Leachate Using Box-Behnken Design and Response Surface Methodology)

  • 이동영;최재민;김정광;한선기;이채영
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.183-192
    • /
    • 2015
  • Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL $CH_4/g$ VS was estimated under the optimum conditions at $62.0^{\circ}C$, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process

  • Tong, Shuang;Zhao, Yan;Zhu, Ming;Wei, Jing;Zhang, Shaoxiang;Li, Shujie;Sun, Shengdan
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.309-315
    • /
    • 2020
  • Slaughterhouse wastewater (SWW) is characterized as one of the most harmful agriculture and food industrial wastewaters due to its high organic content. The emissions of SWW would cause eutrophication of surface water and pollution of groundwater. This study developed a pilot scale anaerobic-aerobic slaughterhouse wastewater treatment process (AASWWTP) to enhance the chemical oxygen demand (COD) and total nitrogen (TN) removal. The optimum supernatant reflux position and ratio for TN removal were investigated through the modified Box-Behnken design (BBD) experiments. Results showed that COD could be effectively reduced over the whole modified BBD study and the removal efficiency was all higher than 98%. The optimum reflux position and ratio were suggested to be 2 alure and 100%, respectively, where effluent TN concentration was satisfied with the forthcoming Chinese discharge standard of 25 mg/L. Anaerobic digestion and ammonia oxidation were considered as the main approaches for COD and TN removal in the AASWWTP. The results of inorganic nutrients (K+, Na+, Ca2+ and Mg2+) indicated that the SWW was suitable for biological treatment and the correspondingly processes such as AASWWTP should be widely researched and popularized. Therefore, AASWWTP is a promising technology for SWW treatment but more research is needed to further improve the operating efficiency.

혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리 (Simultaneous Treatment of Sewage Sludge and Food Wastewater Using Combined Digestion Process)

  • 하정협;박종문
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.581-586
    • /
    • 2017
  • 본 연구에서는 하수 슬러지 및 음폐수의 효율적인 병합처리를 위해 고온호기 전처리의 적용가능성을 알아보고자 고온호기-중온혐기 연계공정의 소화효율과 메탄가스 생성량에 미치는 영향을 비교 검증하였다. 또한, 유기물 부하량 증가에 따른 공정 내 변화 양상을 관찰하기 위해 실험실 규모의 고온호기-중온혐기 소화장치를 제작하여 음폐수를 증류수로 희석하는 비율을 1/3 (Run I), 2/3 (Run II) 및 원액(Run III)으로 줄여가며 혐기소화 공정 내 변화 양상을 관찰하였다. 실험 결과 별도의 pH 조절 없이 고온호기-중온혐기 연계공정 소화조 내에서 pH가 7~8으로 안정하게 유지됨을 알 수 있었다. Volatile solid (VS)는 순응 기간 후 고온호기-중온혐기 연계공정에서 52.24% (Run I), 66.59% (Run II) 및 72.53% (Run III)의 제거효율을 보이며, 중온혐기 소화조(R3)에 비교하여 높은 VS 제거율을 보였다. 또한, 고온호기-중온혐기(R1-R2) 연계공정에서 약 1.6배 향상된 메탄 생성률이 관찰되었으며, 메탄수율의 경우에도 고온호기-중온혐기(R1-R2) 연계공정에서 현저하게 높은 값을 유지하였다.

음식물쓰레기 수소발효 시 pH 영향 및 축산폐수와의 혼합 발효 (Effect of pH on Hydrogen Fermentation of Food Waste with Livestock Wastewater)

  • 장해남
    • 유기물자원화
    • /
    • 제24권4호
    • /
    • pp.5-9
    • /
    • 2016
  • 현대의 집적된 산업 사회에서 자정능력을 초과하여 발생하는 막대한 양의 유기성폐자원은 수질, 토양, 대기 등 총체적인 환경오염을 유발하는 처리 곤란 물질로 전락하였고, 화석연료의 지속적인 사용에 따른 온실가스의 방출은 지구온난화를 촉진시켰다. 개발된 회분식 공정을 적용하는 음식물쓰레기 수소발효에서, 세계 최초로 수소 전환율과 초기 및 운전 pH와의 관계를 수학적으로 표현하였고, 동시에 최적화하였다. 최적 초기 및 운전 pH는 각각 7.50, 6.01이었다. 축산폐수를 음식물쓰레기의 수소발효에 보조기질로 첨가 시 pH 제어를 위해 요구되는 알칼리량을 감소시킴과 동시에 수소발생률도 크게 증대시킬 수 있음을 관찰할 수 있었다.