• Title/Summary/Keyword: Food not approved for irradiation

Search Result 4, Processing Time 0.255 seconds

Monitoring on the Foods not Approved for Irradiation in Korea by PSL and TL Detection Method (광자극발광법과 열발광법을 이용한 국내 방사선 조사 허용 외 식품에 대한 실태 조사)

  • Cho, Joon-Il;Lee, Ji-Ae;Lee, Soon-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • This research was conducted to assess applicability of photostimulated luminescence (PSL) and Thermoluminescence (TL) methods for investigation of infant and young children products, nut, seasoned dried fish, spice, dried fruits, fruit & vegetable, grain and marine products, which are not approved for irradiation in Korea. PSL results show that the photon counts of non-irradiated samples were lower than 700, while those of irradiated samples were higher than 700. In TL measurement, TL ratio of irradiated samples were higher than 0.1 or ones can decrease below 0.1 whereas the temperature range of TL Glow curve was between $150{\sim}250^{\circ}C$. Monitoring result about 8 class of 325 not approved to irradiated foods, photon counts of samples were less than 700, and after re-irradiation TL Ratio ($TL_1/TL_2$) through re-irradiation step at 1 kGy were higher than 0.1 for the all samples. Therefore, these results suggested that PSL and TL measurements were useful detection methods for 8 class food products not approved to irradiation in Korea and all sample (325 cases) were not irradiated when we analysed by PSL and TL methods.

Application of Irradiation Technology to Preserving and Improving Qualities of Agricultural Products

  • Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.295-301
    • /
    • 1998
  • Potential applications of irradiation technology inpostharvest handling of agricultural products have been documented over the past five decades. The biological effects of ionizing radiation on food were demonstrated to have the potential both of reducing the storage losses by controlling spoilage microoraganisms, insects, to have the potential both of reducing the storge losses by controlling spoiliage microorganisms, insects, sprouting and ripening, and of improving the hygienic quality of raw and processed products. Food irradiation is recognized as a physical and cold process using gamma-rays from radioisotope sources and electron-beam from the accelerator. As one of the technologies or techniques for preserving and improving the safety of food, irradiated technology has been approved in some 40 countries for more than 200 individeual items of foods and of these about 30 countries including Korea are commerically utilizing this technology. Although limited quantities of irradiated foods are available in the market now, the proper uses of this renewed technology will offer great possibilities not only for increasing the availability of postharvest agricultural products, thereby contributing to price stabilization in the off-season, but also for reducing reliance on chemicals used for sanitary and quarantine requirements. This paper deals with biological actions of ionizing radiation and its potential applications in the agri-food industry from the international point of view.

  • PDF

Application of PSL and TL Detection Method by Irradiation doses on the Foods Approved to Irradiation in Korea (조사 선량에 따른 품목별 PSL과 TL 시험법 적용 가능성 검증)

  • Cho, Joon-Il;Lee, Ji-Ae;Chung, Hyung-Wook;Lee, Soon-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This research was conducted to know application of Photostimulated luminescence (PSL) and Thermoluminesce(TL) methods by irradiation dose for leaching tea, sauces and starch approved in Korea. Leaching tea, sauces and starch powder were treated with $^{60}Co$ gamma ray at dose 0~10 kGy for detection trial whether they are irradiated or not by measuring PSL and TL for whole samples. PSL values were less than threshold value 700 and were, negative for non-irradiated samples but more than 5,000 and were positive for irradiated ones. PSL results of leaching tea and sauces showed the correct identification for non-irradiated and irradiated samples, respectively except starch samples. To enhance the reliability of the TL result, the first glow curve (TL1) was compared with the second glove curve (TL2) obtained after a re-irradiation step at 1 kGy. The TL ratio ($TL_1/TL_2$) was in good agreement with the reported TL threshold for both the non-irradiated (< 0.1) and irradiated (> 0.1) samples. TL results of leaching tea, sauces, starch showed the correct identification for non-irradiated and irradiated samples, respectively. This study was performed to know application of PSL and TL methods for leaching tea, sauces and starch, and the methods were able to detect the irradiation products.

Establishing the Genotoxicological Safety of Gamma-irradiated Egg White and Yolk (감마선 조사 계란의 유전독성학적 안전성 평가)

  • Song, Hyun-Pa;Shin, Eun-Hye;Yun, Hye-Jeong;Jo, Cheor-Un;Kim, Dong-Ho
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.782-788
    • /
    • 2009
  • The genotoxicological safety of gamma-irradiated egg white and yolk was examined to ensure that required safety parameters were met, and in an effort to further apply gamma-irradiation for improvement of the hygienic qualities of eggs. Egg white and yolk were irradiated at 20 kGy, much higher than the legally approved dose (less than 5 kGy), and possible genotoxicity was evaluated using in vitro and in vivo tests. The SOS chromotest employing Escherichia coli PQ37, and a chromosomal aberration test in cultured Chinese hamster lung (CHL) cells, were performed in vitro with or without metabolic activation (S9). An in vivo micronucleus development test was conducted using mouse bone marrow cells. Negative results were obtained in the SOS chromotest. The incidence of chromosomal aberration in CHL cells and the frequency of micronuclear developmentin mouse bone marrow cells treated with irradiated samples were not significantly different from those of non-irradiated controls. Thus, it may be concluded that up to 20 kGy of gamma irradiation applied to egg white and yolk did not show any genotoxic effects under our experimental conditions.