• Title/Summary/Keyword: Food Processing

Search Result 3,845, Processing Time 0.032 seconds

Oxidative stress impairs the meat quality of broiler by damaging mitochondrial function, affecting calcium metabolism and leading to ferroptosis

  • Chen, Zuodong;Xing, Tong;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1616-1627
    • /
    • 2022
  • Objective: This work was conducted to investigate the effects of oxidative stress on meat quality, mitochondrial function, calcium metabolism and ferroptosis of broilers. Methods: In this study, a total of 144 one-day-old male Ross 308 chicks were divided into 3 groups (control group, saline group, and hydrogen peroxide [H2O2] group) with 6 replicates of 8 broilers each. The study lasted for 42 d. The broilers in the saline and H2O2 groups were intraperitoneally injected with 0.75% saline and 10.0% H2O2 on the 16th and 37th day of the experimental period respectively, the injection volumes were 1.0 mL/kg of broiler body weight. On the 42nd day of the experimental period, two chicks were randomly selected from each cage, a total of thirty-six chicks were stunned by electric shock and slaughtered to collect breast muscle samples. Results: The H2O2 exposure reduced pH value, increased drip loss and shear force of breast meat (p<0.05), impaired the ultrastructure and function of mitochondria. The H2O2 exposure damaged the antioxidant system in mitochondria, excessive reactive oxygen species carbonylation modified calcium channels on mitochondria, which impaired the activities of key enzymes on calcium channel, resulted in the increased calcium concentration in cytoplasm and mitochondria (p<0.05). In addition, the H2O2 exposure increased the iron content and lipid peroxidation (p<0.05), which induced ferroptosis. Conclusion: Oxidative stress could impair meat quality by causing mitochondrial dysfunction, resulting in calcium metabolism disorder and ferroptosis.

Changes in Physicochemical and Sensory Properties of Hizikia fusiforme Water Extract by Fermentation of Lactic Acid Bacteria (유산균 발효에 의한 톳(Hizikia fusiforme) 추출액의 이화학적 및 관능적 특성 변화)

  • Song, Ho-Su;Kim, Hong-Kil;Min, Hye-Ok;Choi, Jong-Duck;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • This study was conducted to improve the food functional and sensory food quality of Hizikia fusiforme by the fermentation of lactic acid bacteria. Seven strains of lactic acid bacteria isolated from traditional Korean fermented food were inoculated and cultivated in H. fusiforme water extract. Among them, Lactobacillus brevis LB-20, isolated from Kimchi, was selected for further study by considering the results of bacterial growth, DPPH radical scavenging activity, and sensory evaluation. No significant differences in proximate compositions (moisture, crude protein, crude fat, and crude ash) were observed by the fermentation of L. brevis LB-20. The most dramatical change was the conversion from glutamate to ${\gamma}$-aminobutyric acid (GABA) in H. fusiforme water extract fermented by L. brevis LB-20. The GABA content increased approximately 60-fold after 48 hr of fermentation. The bacterial fermentation also resulted in low-molecularization of the extract. The particle size of the fermented extract became approximately 4-fold smaller than that of the law extract. In addition, the analysis of volatile flavor compounds using GC/MS revealed that the bacterial fermentation dramatically removed off-flavors such as acetaldehyde, haxanal, diallyl disulphide and 1-penten-2-ol in the H. fusiforme extract.

Reduction of Microflora in the Manufacture of Saengshik by Hygienic Processing

  • Bang, Woo-Seok;Eom, Young-Rhan;Oh, Deog-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • This study was conducted to determine the effect of hygienic processing (HP) on the reduction of microorganisms during manufacturing of saengshik with two vegetables (carrots and cabbage) and two grains (barely and glutinous rice) compared to general processing (GP). For GP, distilled water was used for washing raw materials and equipment. For HP, aqueous ozone (3 ppm) in combination with 1% citric acid and 70% alcohol were used for washing raw materials and the equipment, respectively. In carrots, after cutting, total aerobic bacteria (TAB), yeast and mold (YM) and coliforms were significantly increased to 5.19, 8.04 and 2.08 ($log_{10}$ CFU/g), respectively (p<0.05). Washing effectively reduced the increased microorganisms from cross contamination during cutting, but cross contamination increased with subsequent GP drying and milling procedures to 8.56, 8.27 and 3.71 ($log_{10}$ CFU/g) for TAB, YM and coliforms, respectively (p<0.05). On the other hand, HP washing of carrots with 3 ppm ozone in combination with 1% citric acid showed higher antimicrobial effect than GP washing, significantly decreasing the number of microorganisms (p<0.05). Further cross contamination did not occur through drying and milling due to cleaning the equipments with 70% alcohol prior to processing. After milling, the number of TAB, YM and coliforms were significantly decreased to 3.89, 4.47 and not detectable level ($log_{10}$ CFU/g), respectively (p<0.05). Similar results were observed in cabbage and grains. During storage for two months at different temperatures (22 or $4^{\circ}C$), there were no changes in numbers of spoilage microorganisms in the packaged saengsik after either processing. This suggests the importance of HP for the reduction of microorganisms during saengsik production, and demonstrates the effectiveness of disinfection at each processing stage in minimizing contamination levels to enhance microbial safety of saengshik products.

Development of a Seasoning Sauce Using Hot Water Extracts from Anchovy Engraulis japonica Fish Sauce Processing By-products (멸치액젓잔사 추출물을 이용한 조미소재 개발)

  • SHIM, Kil Bo;JEONG, Yeon Gyeom;LEE, Heon Suk;JANG, Mi Soon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.417-422
    • /
    • 2020
  • We developed a seasoning sauce using hot water extracts from anchovy Engraulis japonica fish sauce processing by-products. A temperature of 121℃ was maintained for 120 min and the resulting amino acid content, salinity, and pH were 183.6 mg/100 g, 6.86, and 17.4 g/100 g, respectively. Radish juice, sea tangle Saccharina japonica extract, and mushroom Lentinula edodes were added to improve the flavor. The glutamic acid content of the extract mixed with 10% sea tangle extract was 88.87 mg/100 g and the 5'-GMP (guanine 5'-monophosphate) content of the extract mixed with 10% mushroom extract was 9.67 mg/ g. This study was conducted to determine optimal processing conditions for seasoned products using response surface methodology (RSM). The optimal conditions for X1 (sea tangle extract concentration) and X2 (mushroom extract concentration) were 15.0% and 5.0%, respectively, and the predicted values of the multiple response optimal conditions were Y1 (5'-GMP: 17.36 mg/100 g) and Y2 (glutamic acid: 157.35 mg/100 g). Under the optimal conditions, the experimental values of Y1 and Y2 were 17.32 mg/g and 155.36 mg/100 g, respectively, which are similar to the predicted values. We confirmed the feasibility of developing a seasoning sauce using hot water extract from anchovy fish sauce processing by-products and additives.

Effect of Steaming, Blanching, and High Temperature/High Pressure Processing on the Amino Acid Contents of Commonly Consumed Korean Vegetables and Pulses

  • Kim, Su-Yeon;Kim, Bo-Min;Kim, Jung-Bong;Shanmugavelan, Poovan;Kim, Heon-Woong;Kim, So-Young;Kim, Se-Na;Cho, Young-Sook;Choi, Han-Seok;Park, Ki-Moon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids.

Analysis of Foodborne Pathogens in Brassica campestris var. narinosa microgreen from Harvesting and Processing Steps (어린잎채소의 생산 및 가공 공정 중 식중독 미생물 분석)

  • Oh, Tae Young;Baek, Seung-Youb;Choi, Jeong Hee;Jeong, Moon Cheol;Koo, Ok Kyung;Kim, Seung Min;Kim, Hyun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.63-68
    • /
    • 2016
  • This study was performed to assess the microbiological quality of Brassica campestris var. narinosa microgreen from harvesting and processing steps. The samples were analyzed for total viable cell counts (TVC), coliforms, Enterobacteriaceae, Escherichia coli, Salmonella spp., Listeria monocytogenes, Vibrio parahaemolyticus, Bacillus cereus, and Staphylococcus aureus. The total viable counts of microgreen (whole leaves) and environment samples from harvesting steps were higher than 6.8 log CFU/g and the contamination level of coliforms in the samples were 3.2 log CFU/g and 3.5 log CFU/g of microgreen and soil, respectively. In case of microgreen samples collected from processing steps, the contamination level of TVC and coliforms were higher in raw materials than samples obtained from later stages of processing, i.e. washing, drain, and final products. The contamination levels of B. cereus in raw materials and environments decreased approximately 1.4 log CFU/g in final products. S. aureus was detected in soil samples but Salmonella spp., Listeria monocytogenes, Vibrio parahaemolyticus and pathogenic E. coli was not detected. In order to identify the sources of contamination for microgreen, the genetic similarity of B. cereus isolates obtained from harvesting and processing steps were compared using the repetitive-sequence-based polymerase chain reaction method. B. cereus isolates obtained from harvesting environments and microgreen were clustered with a similarity greater than 95%. In case of B. cereus isolates obtained from microgreen and environmental samples at processing steps showed low genetic similarity.

Antimicrobial Resistance of Escherichia coli isolated from Oyster Crassostrea gigas, Sea Squirts Halocynthia roretzi and Sea Cucumbers Apostichopus japonicus (굴(Crassostrea gigas), 멍게(Halocynthia roretzi) 및 해삼(Apostichopus japonicus)에서 분리한 대장균의 항균제 내성 특성)

  • Park, Kunbawui;Ryu, A Ra;Kim, Song Hee;Ham, In Tae;Kwon, Ji Young;Kim, Ji Hoe;Yu, Hong Sik;Lee, Hee Jung;Mok, Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.494-499
    • /
    • 2017
  • This study evaluated the abundance of fecal coliforms in oysters Crassostrea gigas, sea squirts Halocynthia roretzi and sea cucumbers Apostichopus japonicus in fisheries along the coast of Korea in 2014, and investigated the prevalence of antimicrobial resistance in Escherichia coli isolated from these fishery products. The ranges of fecal coliforms found in oysters, sea squirts and sea cucumbers were <18-20, <18-330 and <18-3,300 MPN (most probable number)/100 g, respectively. Sea squirts contained the greatest range of E. coli (<20-140 MPN/100 g), followed by sea cucumbers (<20-130 MPN/100 g) and oysters (<20-20 MPN/100 g). A total of 26 strains of E. coli were isolated from 34 sea squirt, 25 sea cucumber and 13 oyster samples. Strains thus isolated were tested for their susceptibility to 22 antimicrobial agents used in Korea for medical or veterinary therapy. E. coli isolates showed the greatest resistance to ampicillin (84.6%), followed by trimethoprim (34.6%), nalidixic acid (34.6%), tetracycline (30.8%), pipemidic acid (26.9%), streptomycin (23.1%), chloramphenicol (23.1%), trimethoprim/sulfamethoxazole (23.1%), and gentamicin (15.4%). Resistance to at least one antimicrobial agent was present in 88.5% of E. coli isolates. Of the 26 isolated, six strains (23.1%) were resistant to multiple antimicrobial agents.

Spoilage Lactic Acid Bacteria in the Brewing Industry

  • Xu, Zhenbo;Luo, Yuting;Mao, Yuzhu;Peng, Ruixin;Chen, Jinxuan;Soteyome, Thanapop;Bai, Caiying;Chen, Ling;Liang, Yi;Su, Jianyu;Wang, Kan;Liu, Junyan;Kjellerup, Birthe V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.955-961
    • /
    • 2020
  • Lactic acid bacteria (LAB) have caused many microbiological incidents in the brewing industry, resulting in severe economic loss. Meanwhile, traditional culturing method for detecting LAB are time-consuming for brewers. The present review introduces LAB as spoilage microbes in daily life, with focus on LAB in the brewing industry, targeting at the spoilage mechanism of LAB in brewing industry including the special metabolisms, the exist of the viable but nonculturable (VBNC) state and the hop resistance. At the same time, this review compares the traditional and novel rapid detection methods for these microorganisms which may provide innovative control and detection strategies for preventing alcoholic beverage spoilage, such as improvement of microbiological quality control using advanced culture media or different isothermal amplification methods.