Browse > Article
http://dx.doi.org/10.4014/jmb.1908.08069

Spoilage Lactic Acid Bacteria in the Brewing Industry  

Xu, Zhenbo (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Luo, Yuting (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Mao, Yuzhu (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Peng, Ruixin (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Chen, Jinxuan (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Soteyome, Thanapop (Home Economics Technology, Rajamangala University of Technology Phra Nakhon)
Bai, Caiying (Guangdong Women and Children Hospital)
Chen, Ling (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Liang, Yi (Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd.)
Su, Jianyu (School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology)
Wang, Kan (Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College)
Liu, Junyan (Department of Civil and Environmental Engineering, University of Maryland)
Kjellerup, Birthe V. (Department of Civil and Environmental Engineering, University of Maryland)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.7, 2020 , pp. 955-961 More about this Journal
Abstract
Lactic acid bacteria (LAB) have caused many microbiological incidents in the brewing industry, resulting in severe economic loss. Meanwhile, traditional culturing method for detecting LAB are time-consuming for brewers. The present review introduces LAB as spoilage microbes in daily life, with focus on LAB in the brewing industry, targeting at the spoilage mechanism of LAB in brewing industry including the special metabolisms, the exist of the viable but nonculturable (VBNC) state and the hop resistance. At the same time, this review compares the traditional and novel rapid detection methods for these microorganisms which may provide innovative control and detection strategies for preventing alcoholic beverage spoilage, such as improvement of microbiological quality control using advanced culture media or different isothermal amplification methods.
Keywords
Lactic acid bacteria; brewing industry; spoilage mechanism; detection methods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lafarge V, Ogier JC, Girard V, Maladen V, Leveau JY, Gruss A, et al. 2004. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70: 5644-5650.   DOI
2 Somers EB, Johnson ME, Wong AC. 2001. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J. Dairy Sci. 84: 1926-1936.   DOI
3 Lyhs U, Korkeala H, Vandamme P, Bjorkroth J. 2001. Lactobacillus alimentarius: a specific spoilage organism in marinated herring. Int. J. Food Microbiol. 64: 355-360.   DOI
4 Entani E, Masai H, Suzuki KI. 1986. Lactobacillus acetotolerans, a new species from fermented vinegar broth. Int. J. Syst. Bacteriol. 36: 544-549.   DOI
5 Geissler AJ, Behr J, von Kamp K, Vogel RF. 2016. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 216: 60-68.   DOI
6 Bartowsky EJ, Henschke PA. 2004. The 'buttery' attribute of wine--diacetyl--desirability, spoilage and beyond. Int. J. Food Microbiol. 96: 235-252.   DOI
7 Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12: 151-161.   DOI
8 Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156.   DOI
9 Yin H, Dong J, Yu J, Li Y, Deng Y. 2018. A novel horA genetic mediated RCA detection of beer spoilage lactobacillus. Microb. Pathog. 114: 311-314.   DOI
10 Wang L, Li Y, Chu J, Xu Z, Zhong Q. 2012. Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol. Biol. Rep. 39: 445-449.   DOI
11 Xu Z, Li L, Chu J, Peters BM, Harris ML, Li B, et al. 2012. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res. Int. 47: 166-173.   DOI
12 Qing-xin G, Bin Y, Hua Q. 2016. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the detection of MRSA $\delta$-toxin. J. Chin. Antibiotics 44: 455-459.
13 van Baar BL. 2000. Characterisation of bacteria by matrix-assisted laser desorption/ ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev. 24: 193-219.   DOI
14 Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B. 2010. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res. 9: 3169-3183.   DOI
15 Rawat S. 2015. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. 5: 47-56
16 Sakamoto K, Konings WN. 2003. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 89: 105-24.2.   DOI
17 Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101.   DOI
18 Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hopresistance Lactobacillus brevis. Front Microbiol. 9: 6.   DOI
19 Bevilacqua A, Corbo M, Sinigaglia M. 2016. The Microbiological Quality of Food: Foodborne Spoilers, pp. 247-248. 1st Ed. Antonio Bevilacqua, Maria Rosaria Corbo and Milena Sinigaglia, Foggia, Italy.
20 Barbieri F, Montanari C, Gardini F, Tabanelli G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8: 17.   DOI
21 Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323.   DOI
22 Nowakowska J, Oliver JD. 2013. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol. Ecol. 84: 213-222.   DOI
23 Egan AF, Shay BJ, Rogers PJ. 1989. Factors affecting the production of hydrogen sulphide by Lactobacillus sake L13 growing on vacuum-packaged beef. J. Appl. Microbiol. 67: 255-262.
24 Doan NTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Thanh BL, et al. 2012. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 55: 265-273.   DOI
25 Xin L, Zhang L, Meng Z, Lin K, Zhang S, Han X, et al. 2017. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from North China. J. Dairy Sci. 100: 7802-7811.   DOI
26 Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156.   DOI
27 Du Toit M, Pretorius I. S. 2000. Microbial spoilage and preservation of wine: using weapons from nature's own arsenal-a review. S. Afr. J. Enol. Vitic. 21: 74-96
28 Holland R, Crow V, Curry B. 2011. Lactic Acid Bacteria Pediococcus spp., pp. 149-152. In Fuquay JW (ed.), Encyclopedia of Dairy Sciences (2nd Ed.), Ed. Academic Press, San Diego
29 Back W. 1994. Secondary contamination in the filling area. Brauwelt Int. 4: 326-328.
30 Yimin Z, Lixian Z, Wangang Z, Pengcheng D, Jiangang H, Xin L. 2018. An overview of spoilage microorganisms in fresh beef. Food Sci. 39: 289-296.
31 Pothakos V, Devlieghere F, Villani F, Bjorkroth J, Ercolini D. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109: 66-74.   DOI
32 Dainty RH, Mackey BM. 1992. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. Soc. Appl. Bacteriol. Symp. Ser. 21: 103s-114s.
33 Comi G, Iacumin L. 2012. Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Int. J. Food Sci. Technol. 47: 114-121   DOI
34 Suzuki K, Iijima K, Asano S, Kuriyama H, Kitagawa Y. 2006. Induction of viable but nonculturable state in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 295-301.   DOI
35 Dwidjosiswojo Z, Richard J, Moritz MM, Dopp E, Flemming HC, Wingender J. 2011. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. Int. J. Hyg. Environ. Health 214: 485-492.   DOI
36 Zhang SH, Ye CS, Lin HR, Lv L, Yu X. 2015. UV disinfection induces a Vbnc state in Escherichia coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 49: 1721-1728.   DOI
37 Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb. Pathog. 110: 257-261.   DOI
38 Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic Staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594.   DOI
39 De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011 Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 34: 20-29.   DOI
40 Bellanger AP, Gbaguidi-Haore H, Liapis E, Scherer E, Millon L. 2019. Rapid identification of Candida sp. by MALDI-TOF mass spectrometry subsequent to short-term incubation on a solid medium. APMIS 127: 217-222.   DOI
41 Morgan ME. 1976. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 18: 953-965.   DOI
42 Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hop-resistance Lactobacillus brevis. Front Microbiol. 9: 6.   DOI
43 Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101.   DOI
44 Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb. Pathog. 107: 219-224.   DOI
45 Yang D, Jun-yan L, Hui-jing F, Jiang C, Hui-ping L, Lin L, et al. 2014. Induction and resuscitation of VBNC state beer-spoilage lactobacilli. Mod. Food Sci. Technol. 30: 154-159.
46 Liu J, Li L, Peters BM, Li B, Chen L, Deng Y, et al. 2017. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiologyopen 6: e00506.   DOI
47 Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep.8: 11446.   DOI
48 Tanigawa K, Kawabata H, Watanabe, K. 2010. Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 76: 4055-4062.   DOI
49 Magnusson LU, Farewell A, Nyström T. 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13: 236-242.   DOI
50 Liu JY, Li L, Peters BM, Li B, Deng Y, Xu ZB, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: 5.
51 Sakamoto K, Margolles A, van Veen HW, Konings WN. 2001. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371-5375.   DOI
52 Liu JY, Deng Y, Peters BM, Li L, Li B, Chen LQ, et al. 2016. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans. Sci. Rep. 6: 11.   DOI
53 John. DiMichele L, Lewis MJ. 1993. Rapid, species-specific detection of lactic acid bacteria from beer using the polymerase chain reaction. J. Am. Soc. Brew. Chem. 51:63-66.
54 Suzuki K, Asano S, Iijima K, Kitamoto K. 2008. Sake and Beer Spoilage Lactic Acid Bacteria- A Review, 114: 209-223.   DOI
55 Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Study on ATP production of lactic acid bacteria in beer and development of a rapid pre-screening method for beer-spoilage bacteria. J. Inst. Brew. 114: 209-223.   DOI
56 Jun-yan L, Lin L, Bing L, Yang D, Zhen-bo X. 2015. Application of de novo sequencing in the whole genomic study of beer-spoilage lactobacilli. Mod. Food Sci. Technol. 31: 155-162.
57 Yildiz FH, Schoolnik GK. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180: 773-784.   DOI
58 Iijima K, Suzuki K, Ozaki K, Yamashita H. 2006. horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J. Appl. Microbiol. 100: 1282-1288.   DOI
59 Liu J, Li L, Peters BM, Li B, Deng Y, Xu Z, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: fnw201.
60 Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl. Environ. Microbiol. 71: 5089-5097.   DOI
61 Suzuki K, Koyanagi M, Yamashita H. 2004. Genetic characterization of non-spoilage variant isolated from beer-spoilage Lactobacillus brevis ABBC45. J. Appl. Microbiol. 96: 946-953.   DOI
62 Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. 2006. A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 173-191.   DOI
63 Suzuki K, Ozaki K, Yamashita H. 2004. Genetic marker for differentiating beer-spoilage ability of Lactobacillus paracollinoides strains. J. Appl. Microbiol. 97: 712-718.   DOI
64 Deng Y, Liu JY, Li HP, Li L, Tu JX, Fang HJ, et al. 2014. An improved plate culture procedure for the rapid detection of beer-spoilage lactic acid bacteria. J. Inst. Brew. 120: 127-132.   DOI
65 Fricker M, Reissbrodt R, Ehling-Schulz M. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacilluscereus. Int. J. Food Microbiol. 121: 27-34.   DOI
66 Reissbrodt R. 2004. New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.--An overview. Int. J. Food Microbiol. 95: 1-9.   DOI
67 Iversen C, Forsythe SJ. 2007. Comparison of media for the isolation of Enterobacter sakazakii. Appl. Environ. Microbiol. 73: 48-52.   DOI
68 Reynisson E, Lauzon HL, Magnusson H, Hreggvidsson GO, Marteinsson VT. 2008. Rapid quantitative monitoring method for the fish spoilage bacteria Pseudomonas. J. Environ. Monit. 10: 1357-1362.   DOI
69 Xu Z, Hou Y, Peters BM, Chen D, Li B, Li L, et al. 2016. Chromogenic media for MRSA diagnostics. Mol. Biol. Rep.43: 1205-1212.   DOI
70 Casey GD, Dobson AD. 2004. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice--a preliminary study. Int. J. Food Microbiol. 91: 327-335.   DOI
71 Juvonen R, Koivula T, Haikara A. 2008. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int. J. Food Microbiol. 125: 162-169.   DOI
72 Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep. 8: 11446.   DOI
73 Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63.   DOI
74 Fire A, Xu SQ. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92: 4641-4645.   DOI
75 Walker GT, Little MC, Nadeau JG, Shank DD. 1992. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 89: 392-396.   DOI
76 Yun-Zhe Z, Xian-Zhou Z, Ying-Jun L, Xiao-Yan M, Wei Z. 2016. Rapid detection of Lactobacillus acidophilus in yogurt by loop-mediated isothermal amplification. J. Food Safety Qual. 7: 4581-4585.
77 Xu G, Hu L, Zhong H, Wang H, Yusa S, Weiss TC, et al. 2012. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci. Rep. 2: 246.   DOI