• 제목/요약/키워드: Food 3D-printing

검색결과 24건 처리시간 0.023초

식품 3D-프린팅 기술과 식품 산업적 활용 (Food 3D-printing Technology and Its Application in the Food Industry)

  • 김종태;맹진수;신원선;심인철;오승일;조영희;김종훈;김철진
    • 산업식품공학
    • /
    • 제21권1호
    • /
    • pp.12-21
    • /
    • 2017
  • Foods are becoming more customized and consumers demand food that provides great taste and appearance and that improves health. Food three-dimensional (3D)-printing technology has a great potential to manufacture food products with customized shape, texture, color, flavor, and even nutrition. Food materials for 3D-printing do not rely on the concentration of the manufacturing processes of a product in a single step, but it is associated with the design of food with textures and potentially enhanced nutritional value. The potential uses of food 3D-printing can be forecasted through the three following levels of industry: consumer-produced foods, small-scale food production, and industrial scale food production. Consumer-produced foods would be made in the kitchen, a traditional setting using a nontraditional tool. Small-scale food production would include shops, restaurants, bakeries, and other institutions which produce food for tens to thousands of individuals. Industrial scale production would be for the mass consumer market of hundreds of thousands of consumers. For this reason, food 3D-printing could make an impact on food for personalized nutrition, on-demand food fabrication, food processing technologies, and process design in food industry in the future. This article review on food materials for 3D-printing, rheology control of food, 3D-printing system for food fabrication, 3D-printing based on molecular cuisine, 3D-printing mobile platform for customized food, and future trends in the food market.

식품 3D 프린팅 기술과 3D 프린팅 식품 소재 (Food 3D Printing Technology and Food Materials of 3D Printing)

  • 김민정;김미경;유영선
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.109-115
    • /
    • 2020
  • 최근 3년간 세계 식품 3D프린팅 시장은 연 평균 31.5%의 높은 성장률과 약 94억 6000만 달러에 이르는 산업규모를 보이고 있다. 식품 3D 프린팅 기술은 기존 식품을 자유롭게 디자인함으로써 개인의 취향과 목적에 따라 식품을 제작할 수 있어 다양한 범위로 활용이 가능하다는 장점을 지니고 있다. 세계 여러 국가에서는 식품 3D프린터를 제작하여 식품 3D 프린팅의 장점들을 활용한 음식과 같은 시제품들을 내놓고 있으며 전투식량, 우주식량, 음식점, 유동식, 노인식, 환자식, 유아식 등의 여러 분야에서까지 활용하고자 시도 중에 있다. 성장가능성이 높고 산업 규모가 지속적으로 확대될 전망인 3D 프린팅 시장은 블루오션이 될 가능성이 다분한 반면 우리나라는 식품 3D 프린팅 기술뿐만 아니라 전반적인 3D프린팅 활용률이나 산업 규모 자체가 작다. 이는 선진국에 비해 미흡한 제도화와 표준화된 국산 소재 개발이 지연 등의 문제가 존재하기 때문으로 따라서 본고에서는 식품 3D프린팅의 필요성에 대해 알리고 우리나라의 식품 3D 프린팅 시장 활성화라는 부가 효과를 얻고자 식품 3D프린팅 기술과 식품소재에 관해 기술하고자 한다.

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • 한국축산식품학회지
    • /
    • 제44권2호
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.

3D 프린팅 기술과 미래식품산업의 응용 (3D printing technology and its applications in the future food industry: a review)

  • 윤형선;이미현;김현연;김수진;이소윤;김연비;유영선;이진규
    • 식품과학과 산업
    • /
    • 제49권4호
    • /
    • pp.64-69
    • /
    • 2016
  • The potentialities of 3D printing technology are discussed from technical and research-oriented perspectives for industrial manufacturing of a variety of food products. Currently, 3D printing technology has advanced to enable us to process or cook innovative foods. However, food-based materials for 3D printing are still limited in terms of eating qualities, nutritional values and functionality as well as industrial production. Therefore, this uprising issue on alternative food processing techniques especially focused on the exploration of new food materials combined with these 3D printing technologies needs to be re-spotlighted, and then solved to pave the way to this innovative and sensational area of investigation with more accessibility. In this review, previous research work and industrial applications conducted by frontier research groups in this field are covered, then to open discussion for future research on the 3D printing of food.

식염 함량에 따른 식품 3D 프린팅용 연육 잉크의 적합성 조사 (Optimization of the salt content in fish surimi ink for food 3D Printing)

  • 이채현;김명은;양위지아;손유진;이지아;류은순;정운주;강버들;이상길
    • 한국식품과학회지
    • /
    • 제53권1호
    • /
    • pp.29-33
    • /
    • 2021
  • 본 논문에서는 3D 프린터의 원료로 이용하기 위하여 연육의 물성을 조정하기 위하여 식염의 함량을 변화시키는 연구를 수행하였다. 이를 토대로 식염 3%를 첨가하였을 때 연육의 물성이 3D 프린터에 더 적합한 물성을 갖는 것을 확인하였다. 식품산업은 식품 안전성의 특성상 3D 프린터의 적용 가능한 잉크 원료개발에 제한이 많은 분야이다. 그러므로 본 연구는 연육이 물성조절을 통해 3D 프린터용 잉크로 개발될 수 있음을 확인한 기초 연구이며, 수산식품산업의 3D 프린팅 기술 응용에 매우 중요한 연구이다. 향후 연육의 3D 프린터 원료로의 개발이 표준화 된다면, 개인맞춤형 수산 식품 제작, 수산 단백질을 이용한 다양한 대체육 개발 등 많은 분야에서 응용이 가능할 것으로 생각된다.

Printing Optimization of 3D Structure with Lard-like Texture Using a Beeswax-Based Oleogels

  • Hyeona Kang;Yourim Oh;Nam Keun Lee;Jin-Kyu Rhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1573-1582
    • /
    • 2022
  • In this study, we investigated the optimal conditions for 3D structure printing of alternative fats that have the textural properties of lard using beeswax (BW)-based oleogel by a statistical analysis. Products printed with over 15% BW oleogel at 50% and 75% infill level (IL) showed high printing accuracy with the lowest dimensional printing deviation for the designed model. The hardness, cohesion, and adhesion of printed samples were influenced by BW concentration and infill level. For multi-response optimization, fixed target values (hardness, adhesiveness, and cohesiveness) were applied with lard printed at 75% IL. The preparation parameters obtained as a result of multiple reaction prediction were 58.9% IL and 16.0% BW, and printing with this oleogel achieved fixed target values similar to those of lard. In conclusion, our study shows that 3D printing based on the BW oleogel system produces complex internal structures that allow adjustment of the textural properties of the printed samples, and BW oleogels could potentially serve as an excellent replacement for fat.

Industrial Trends of 3D Printing Technology

  • Park, Sehwan;Park, Jongkyu
    • International Journal of Advanced Culture Technology
    • /
    • 제1권1호
    • /
    • pp.19-22
    • /
    • 2013
  • The basic principle of the product manufacturing technology using the 3D printing technique materializes the material including the high molecular substance or plastic and metallic dust, and etc. the product into the laminate additive manufacturing according to the design diagram gradually. It is applied to the various industrial field including the field of food division, field of home appliances, field of medicine, field of mechanical department and construction, etc.. The global development case of 3D printing technique is the next. This study described global technology and market trends. Afterward, 3D printing technique manages the important role when it exceeds the product manufacturing view just and is grafted with the various technology including the biotechnology, nanotechnology, and etc. and it improves the quality of the human life.

  • PDF

쌀보리 전분의 첨가가 수리미 혼합물의 3D 프린팅 적합성에 미치는 영향 (Effects of Naked Barley Starch on Properties of Fish Surimi Mixture for 3D Printing)

  • 이하영;유현지;이상민;나현식;김동현;서고운;고창현;박선우;최형욱;최예진;조미정;김동우;안동현
    • 한국수산과학회지
    • /
    • 제57권2호
    • /
    • pp.109-115
    • /
    • 2024
  • This study investigated the effects of various naked barley starch contents (0, 0.67, 1.34, 2.0, and 2.67 wt%) in surimi mixtures for 3D printing. Adding starch to surimi altered its texture, potentially reducing production costs. Unheated surimi became less firm with higher starch content. After heating, there was an increase in hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, and resilience, peaking at 1.34 wt% starch. Compared to the negative control, starch-added heated surimi had a tougher texture. The color values (L*, a*, and b*) decreased after heating, with no significant change in shearing force with increasing starch content. Sensory evaluation indicated improved smell, texture, hardness, elasticity, and preference over the negative control. Higher starch content increased hardness for 3D printing suitability with no significant difference above 1.34 wt% starch indicating this is the most appropriate content. Naked barley starch enhanced surimi strength without affecting smell and preference, suggesting it as a potential surimi additive.

3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발 (Development of Conductive Polycaprolactone (PCL)-resin based on Reduced Graphene Oxide(rGO)/Polypyrrole (Ppy) composite for 3D-printing application)

  • 정현택;정화용;조영광;김창현;김용렬
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.935-939
    • /
    • 2018
  • 3D프린팅 기술은 산업적 응용을 넘어서 기계 설비 및 각종 장비의 부품생산뿐만 아니라 의료, 식품, 패션에 이르기까지 많은 시제품들의 개발 및 연구가 진행되고 있다. 3D 프린팅 기반 기술의 적용사례를 볼 때 정밀도와 제작 속도 측면에서도 다른 산업에 충분이 활용될 수 있는 기술의 개발이 보고되고 있으나, 아직까지는 시제품 위주로 이용되고 있으며, 향후 3D 프린팅 기술은 4차산업혁명과 관련하여 광범위한 분야에서 응용될 수 있는 완성품이나 부품제작에 이용될 것으로 예상된다. 본 연구에서는 탄소나노 재료중 대표적으로 많이 이용되는 환원그래핀 [rGO(reduced graphene oxide)]과 전도성 고분자중 생체 친화적인 특성을 갖는 폴리피롤[Ppy(Polypyrrole)]의 복합체를 생분해성 고분자인 폴리카프로락톤 [PCL(polycaprolactone)]과 혼합하여 3D 프린팅용 전도성 레진을 개발하고자 하였다. 결과로, 폴리피롤과 환원그래핀 각각 5 wt%, 0.75 wt% 에서 최적의 전기적 특성을 나타내었으며, 환원그래핀의 농도에 따른 표면분석에서도 이와 부합하는 결과를 확인 할 수 있었다. 본 연구를 통하여 제조된 전도성 레진은 3D 프린팅 뿐만 아니라, 다른 산업분야의 전자재료에도 적용이 가능할 것으로 사료된다.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • 산업식품공학
    • /
    • 제21권3호
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.