• Title/Summary/Keyword: Follicular Growth

Search Result 149, Processing Time 0.038 seconds

Anti-Müllerian hormone as a predictor of polycystic ovary syndrome treated with clomiphene citrate

  • Hestiantoro, Andon;Negoro, Yuwono Sri;Afrita, Yohana;Wiweko, Budi;Sumapradja, Kanadi;Natadisastra, Muharam
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • Objective: This study aimed to determine the threshold of $anti-M{\ddot{u}}llerian$ hormone (AMH) as predictor of follicular growth failure in polycystic ovary syndrome (PCOS) patients treated with clomiphene citrate (CC). Methods: Fifty female subjects with PCOS were recruited and divided into two groups based on successful and unsuccessful follicular growth. Related variables such as age, infertility duration, cigarette smoking, use of Moslem hijab, sunlight exposure, fiber intake, body mass index, waist circumference, AMH level, 25-hydroxy vitamin D level, and growth of dominant follicles were obtained, assessed, and statistically analyzed. Results: The AMH levels of patients with successful follicular growth were significantly lower (p= 0.001) than those with unsuccessful follicular growth ($6.10{\pm}3.52$ vs. $10.43{\pm}4.78ng/mL$). A higher volume of fiber intake was also observed in the successful follicular growth group compared to unsuccessful follicular growth group (p= 0.001). Our study found the probability of successful follicle growth was a function of AMH level and the amount of fiber intake, expressed as Y =-2.35+($-0.312{\times}AMH\;level$)+($0.464{\times}fiber\;intake$) (area under the curve, 0.88; 95% confidence interval, 0.79-0.98; p< 0.001). Conclusion: The optimal threshold of AMH level in predicting the failure of follicle growth in patients with PCOS treated with CC was 8.58 ng/mL.

Antrum Formation and Growth In Vitro of Mouse Pre-antral Follicles Cultured in Media without Hormones (호르몬 무 첨가 배양액에서 생쥐 Pre-antral Follicles의 체외성장과 난포강 형성)

  • Park, Kee-Sang;Kim, Ju-Hwan;Lee, Taek-Hoo;Song, Hai-Bum;Chun, Sang-Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.79-86
    • /
    • 2001
  • Objective: Mouse pre-antral follicles require the addition of gonadotropins (Gns) to complete maturation and ovulation of oocyte and antrum formation in vitro. However, we tried examination of in vitro growth of mouse pre-antral follicles in medium without Gns and/or phygiological factors. And also, pre-antral follicles were isolated from ovaries by mechanical method. Our present studies were conducted to evaluate on the growth of follicles and intra-follicular oocytes and antrum formation in vitro of mouse pre-antral follicles in two different media. Methods: Pre-antral follicles ($91{\sim}120{\mu}m$) were isolated mechanically by fine 30G needles not using enzymes from ovaries of 3-6 week-old female ICR mice. Isolated pre-antral follicles were cultured in $20{\mu}l$ droplets of TCM (n=17; follicles: $107.8{\pm}1.58{\mu}m$; oocytes: $57.9{\pm}1.2{\mu}m$) or MEM (n=12; follicles: $109.3{\pm}2.53{\mu}m$; oocytes: $55.4{\pm}1.6{\mu}m$) under mineral oil on the 60 mm culture dish. All experimental media was supplemented with 10% FBS without Gns and/or physiological factors. Pre antral follicles were individually cultured for 8 days. Antram formation and growth of pre-antral follicles and intra-follicular oocytes were evaluated using precalibrated ocular micrometer at X200 magnifications during in vitro culture. Results were analyzed using combination of Student's t-test and Chi-square, and considered statistically significant when p<0.05. Results: Antrum formation had started in two culture media on day 2. On day 8, antrum formation had occurred in 58.3% of pre-antral follicles cultured in DMEM, but only in 23.5% of those cultured in TCM (p=0.0364). Growth of pre-antral follicles and intra-follicular oocytes were observed on day 4 and 8. On day 4, follicular diameter was similar (p=0.1338) in TCM ($119.4{\pm}2.58{\mu}m$) and MEM ($125.4{\pm}4.52{\mu}m$). However, on day 8, diameters of pre-antral follicles cultured in MEM ($168.9{\pm}17.29{\mu}m$) were significantly bigger (p=0.0248) than that in TCM ($126.7{\pm}4.28{\mu}m$). On day 4 and 8, diameters of intra-follicular oocytes were similar in TCM ($67.1{\pm}1.3$ and $72.4{\pm}0.9{\mu}m$) and MEM ($65.2{\pm}1.7$ and $73.3{\pm}1.5{\mu}m$), respectively. Conclusion: We can conform that medium without Gns and/or physiological factors can be used for in vitro antrum formation and growth of pre-antral follicles and intra-follicular oocytes in mouse. In conclusion, MEM supplemented with FBS can be used for growth in vitro of mouse pre-antral follicles isolated mechanically.

  • PDF

Ovarian Follicular Dynamics, Ovarian Follicular Growth, Oocyte Yield, In vitro Embryo Production and Repeated Oocyte Pick Up in Thai Native Heifers Undergoing Superstimulation

  • Chasombat, J.;Nagai, T.;Parnpai, R.;Vongpralub, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.488-500
    • /
    • 2013
  • The objective of this study was to compare the effectiveness of the protocols for superstimulation of follicular growth in Thai native heifers. Heifers (n = 20) were randomly divided into four groups of five heifers/group. Heifers were given a single dose by i.m. administration of 100 mg Follicle Stimulating Hormone dissolved in polyvinylpyrrolidone (FSHp) at 24 h. Ovum pick up (OPU) occurred at 72 h ($F_{24}O_{72}$ protocol; Group 1) or 96 h ($F_{24}O_{96}$ protocol; Group 2), and at 36 h and OPU at 72 h ($F_{36}O_{72}$ protocol; Group 3) or 96 h ($F_{36}O_{96}$ protocol; Group 4) after follicular ablation. The dynamics of ovarian follicular growth were monitored by twice-daily ultrasonographic examinations. Blood sample collections were performed every 12 h after initiation of treatment for assessment of FSH, E2 and P4 profiles. All heifers were subjected to eight repeated sequential sessions of OPU. The follicular deviation commenced $24{\pm}5.32$ h after follicular ablation in all groups. The circulatory FSH surged quickly from 24 to 36 h (>0.8 ng/ml) after follicular ablation and circulatory estrogen levels steadily increased from 36 h until OPU in all groups. At the end of the OPU sessions, the mean number of aspirated follicles/heifer/session in $F_{36}O_{72}$ protocol (Group 3) and $F_{36}O_{96}$ protocol (Group 4) were higher than in the two other groups (p<0.05). The number of cumulus-oocyte complexes (COCs), cleaved and day 8 blastocysts rates in the $F_{36}O_{72}$ protocol (Group 3) were higher than in the other groups (p<0.05). It can be concluded that a single dose i.m. administration of 100 mg FSHp at 36 h and OPU at 72 h after follicular ablation ($F_{36}O_{72}$ protocol; Group 3) was the most effective protocol for superstimulation of follicular growth for repeated OPU and subsequent in vitro embryo production in Thai native heifers.

Consecutive Scanning of Ovulation Via Transvaginal Sonography (초음파를 이용한 배란의 연속관찰)

  • Kang, Y.C.;Kim, D.S.;Lee, W.H.;Park, J.Y.;Ou, H.R.;Park, Y.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.20 no.2
    • /
    • pp.131-135
    • /
    • 1993
  • The ultrasonographic examination with vaginal probe(5MHz) was undertaken in 101 patients at infertility clinic of Eul-Ji General Hospital. This study was performed to evaluate the number of mature follicles per menstrual cycle, the relationship of both ovaries for consecutive ovulatory cycle and the responsiveness of follicular growth followed by administration of ovulation inductant. The results were as follows; 1. The ovulation induction group with clomiphene citrate showed more follicles than natural menstrual cycle group. 2. Each means of numbers of follicles between ovaries showed no difference between natural and ovulatory induction groups. 3. The rate of follicular growth per one menstrual cycle showed higher in the clomiphene citrate induced cycle group. 4. Clomiphene citrate induced group tends to be easier for multiple follicular growth but had no significant difference in statistics. 5. The ipsilateral Vs. contralateral follicular growth rate for consecutive menstrual cycles in both ovaries showed no significant difference between two groups.

  • PDF

Effect of Follicular Fluid Proteins and Gonadotropins on Progesterone Secretion by Buffalo Granulosa Cells In vitro

  • Vinze, Mukesh;Sharma, M.K.;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1496-1500
    • /
    • 2004
  • In the mammalian ovary the follicular fluid contains proteins and peptides which play an important role in growth, development and maturation of oocytes. The gonadotropins and some other factors work synergistically and regulate ovarian functions. In the present study the effect of follicular fluid proteins (FFP) and gonadotropins on progesterone secretion by granulosa cells (GC) from buffalo ovary, was investigated during culture. The follicular fluid was collected from small (<5 mm), and medium (5-8 mm) follicles obtained from buffalo ovaries. The follicular fluid from medium follicles was fractionated with ammonium sulphate at 80% saturation. The precipitated protein fraction was further resolved in to minor (peaks I, III) and major (peak II) proteins using gel filtration (Sephadex G-200). The FFP from small follicles and major FFP (peak II) at a dose of 200 $\mu$g/well, significantly stimulated progesterone secretion by pooled GC (3${\times}10^{5}$ cells/2 ml medium/well). The minor FFP did not show any stimulatory effect. There was a significant increase in progesterone secretion by pooled GC in presence of FFP and LH (10 ng/well), however, FSH (20 ng/well) with FFP exhibited an inhibitory effect. The major FFP and gonadotropins were also studied for their effect on progesterone production by GC isolated from medium and large size follicles. The GC from medium follicles were more responsive to FSH and FFP whereas GC from large follicles exhibited enhanced progesterone secretion with LH and FFP. These results indicated that FFP have their own stimulatory effect and also act synergistically with gonadotropins. The significantly different response shown by GC, for steroid hormone secretion, is based on their stage of growth and differentiation. The purification and characterization of such steroidogenic proteins may help in elucidating their role in growth and differentiation of granulosa cells.

Relationship between Initial Size of Pre-Antral Follicles and Intra-Follicular Oocytes and Their In Vitro Growth in Mice

  • Song, Hai-Bum;Park, Kee-Sang;Kim, Ju-Hwan;Lee, Tae-Hoo;Chun, Sang-Sik
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.243-243
    • /
    • 2004
  • Purpose: This study was conducted to obtain the relationship between initial size of pre-antral follicles (PAF) and intra-follicular oocytes (IFO) and their in vitro growth (IVG) in medium without gonadotropins (Gns) using PAF isolated from mouse ovaries mechanically. (omitted)

  • PDF

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Uterine Involution and Ovarian Follicular Growth during Early Postpartum Period of Murrah Buffaloes (Bubalus bubalis)

  • Lohan, I.S.;Malik, R.K.;Kaker, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.313-316
    • /
    • 2004
  • Ultrasonographic studies were conducted on eight Murrah buffaloes daily from day 6 postpartum (pp) onwards till day 77 pp to monitor changes in the cervix, uterine horn and ovarian follicular growth and development. The mean size of horn and cervix on day six ($9.07{\pm}0.74$ and $8.58{\pm}0.00cm$) decreased significantly to $4.09{\pm}0.09$ and $3.56{\pm}0.08cm$ by day 27 pp, respectively. Follicles in 50% of the buffaloes ovulated within 24 to 54 days pp and the size of the largest follicle on different days increased to more than 5 mm. The remaining 50 percent of animals ovulated after 65 days postpartum. Large size follicles (>8.5 mm) appeared in six out of eight buffaloes between 10 to 30 days pp and five animals had ovulated during early postpartum period. Waves pattern of follicular growth was observed during early postpartum period. Ovulatory follicles growth rate was more than the anovulatory follicles and increase in size was more as compared to the subordinate follicle. Anovulatory follicles persisted for longer period. Mean size of large follicle was more from day 6 to 41 pp and again from 50 to 65 pp in cyclic animals. Second large follicle were large during early postpartum (18days), thereafter, its size was more in acyclic animals. Small follicles population was less in cyclic animals upto day 50 postpartum. Mean medium size follicle growth pattern did not differ in cyclic and acyclic groups. Large size follicle number was more in cyclic group (5/8) during 14 to 20 days postpartum. Presence of large follicles (>8.5 mm) showed initiation of ovarian activity.

In vitro-growth and Gene Expression of Porcine Preantral Follicles Retrieved by Different Protocols

  • Ahn, J.I.;Lee, S.T.;Park, J.H.;Kim, J.Y.;Park, J.H.;Choi, J.K.;Lee, G.;Lee, E.S.;Lim, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.950-955
    • /
    • 2012
  • This study was conducted to determine how the isolation method of the porcine preantral follicles influenced the following follicular growth in vitro. Mechanical and enzymatical isolations were used for retrieving the follicles from prepubertal porcine ovaries, and in vitro-growth of the follicles and the expression of folliculogenesis-related genes were subsequently monitored. The enzymatic retrieval with collagenase treatment returned more follicles than the mechanical retrieval, while the percentage of morphologically normal follicles was higher with mechanical retrieval than with enzymatic retrieval. After 4 days of culture, mechanically retrieved, preantral follicles yielded more follicles with normal morphology than enzymatically retrieved follicles, which resulted in improved follicular growth. The mRNA expression of FSHR, LHR Cx43, DNMT1 and FGFR2 genes was significantly higher after culture of the follicles retrieved mechanically. These results suggest that mechanical isolation is a better method of isolating porcine preantral follicles that will develop into competent oocytes in in vitro culture.