• Title/Summary/Keyword: Foliage analysis

Search Result 43, Processing Time 0.023 seconds

Plant regeneration via direct and indirect adventitious shoot formation and chromosome-doubled somaclonal variation in Titanotrichum oldhamii (Hemsl.) Solereder

  • Takagi, Hiroki;Sugawara, Shintaro;Saito, Tomoka;Tasaki, Haruka;Yuanxue, Lu;Kaiyun, Guan;Han, Dong-Sheng;Godo, Toshinari;Nakano, Masaru
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • The gesneriaceous perennial plant Titanotrichum oldhamii has beautiful foliage and attractive bright yellow flowers. However, breeding of T. oldhamii by conventional sexual hybridization may be difficult because sexual reproduction of this species is very rare. In the present study, plant regeneration systems via both direct and indirect formation of adventitious shoots from leaf explants were established as the first step toward breeding T. oldhamii by using biotechnological techniques. Adventitious shoots were formed efficiently on medium containing $0.1mg\;l^{-1}$ benzyladenine. Histological observation showed that shoot formation on this medium occurred directly from leaf epidermal cells without callus formation. On the other hand, leaf explants formed calluses on medium containing $0.1mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid. The calluses could be maintained by monthly subculturing to fresh medium of the same composition. When the calluses were transferred to plant growth regulator-free medium, they formed adventitious shoots. Directly and indirectly formed shoots rooted well on medium containing $0.1mg\;l^{-1}$ indole-3-butyric acid. Plantlets thus obtained were successfully acclimatized and grew vigorously in the greenhouse. Flow cytometry analysis indicated that no variation in the ploidy level was observed in plants regenerated via direct shoot formation, whereas chromosome doubling occurred in several plants regenerated via indirect shoot formation. Regenerated plants with the same ploidy level as the mother plants showed almost the same phenotype as the mother plants, whereas chromosome-doubled plants showed apparent morphological alterations: they had small and crispate flowers, and round and deep green leaves.

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

Analysis of the Refinement of Shared Mental Model in Science-Gifted Students' Collaborative Problem Solving Process (과학영재의 협업적 문제해결과정에서 나타난 공유된 정신모형의 정교화 양상 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.1049-1062
    • /
    • 2015
  • To understand the synergy of collaboration and to apply this understanding to education, an analysis of how a team solves a problem and the sharing of their mental models is needed. This paper analyzed two things qualitatively to find out the source of synergy in a collaborative problem-solving process. First, the sharing contents in team mental model and second, the process of sharing the team mental model. Ten gifted middle school students collaborated to solve an ill-defined problem called sunshine through foliage problem. The gifted students shared the following results after the collaboration: First, scientific concept prior to common idea or the idea that all group members have before the discussions; second, unique individual ideas of group members; and third, created ideas that were not originally in the personal mental model. With created ideas, the team model becomes more than the sum of individuals. According to the results of process analysis, in the process of sharing mental model, the students proposed and shared the most important variable first. This result implied that the analysis of the order of sharing ideas is important as much as finding shared ideas. Also, the result shows that through their collaboration, the gifted students' shared mental model became more refined and expanded as compared to their individual prior mental models. It is recommended that these results can be used to measure shared mental model and develop collaborative learning models for students.

Adsorption and Metabolism of [14C]butachlor in Rice Plants Under Pot Cultivation ([14C]Butachlor의 벼에 대한 흡수 및 대사)

  • Kim, Ju-Hye;Kim, Jong-Hwan;Kim, Dae-Wook;Lee, Bong-Jae;Kim, Chansub;Ihm, Yangbin;Seo, Jong-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.174-184
    • /
    • 2015
  • In the present study, the metabolism of [$^{14}C$]butachlor was investigated in rice plant according to the OECD test guideline No. 501. [$^{14}C$]Butachlor was treated as granule to paddy water by application of 1.5 kg ingredient (a.i.)/ha at the 3~4 leave stage of rice plant. At 85 days after treatment (DAT), samples of panicle, foliage, and roots were taken for radioactivity analysis. Upon harvest at 126 DAT, rice plants were separated into brown rice, husk, straw, and root parts. Amounts of total radioactivity absorbed by rice plant ranged from 8.6 to 9.8% of applied radioactivity (AR). Total radioactive residues (TRRs) of rice plant at 126 DAT was the highest as 4.0421 mg/kg (7.3% AR) in the straw followed by 1.4595 mg/kg (2.4% AR) in the root, 0.7257 mg/kg (0.1% AR) in the husk. The lowest level recording 0.1020 mg/kg (0.1% AR) was found in brown rice. Each part was extracted with various solvents and solvent/water mixtures. Greater than 70% of TRRs was readily extractable from foliage, panicle, husk and straw. Only 34.0% of the brown rice and 43% of root based on TRRs were extractable showing that the residues were completely assimilated in the plant tissue. The level of non-extractable radioactivity was ranged from 26.2 to 66.0% of TRRs. From this study, five tentative major metabolites (M1, M2, M3, M4 and M5) were observed in rice extracts. Among the metabolites, 2,6-diethylaniline assigned as M4 was identified in rice plant by comparing to retention time of reference standard. Un-metabolized butachlor was not detected in any fractions. In soil extracts, N-(butoxymethyl)-N-(2,6-diethyl phenyl)acetamide, 2,6-diethylaniline, M2, M3 and M5 were observed. And the concentration of butachlor was low level (ca. 0.03 mg/kg).

Effect of Applied Substrates on Foliage Growth in Hydro-Culture (수경재배 시 첨가매질이 관엽식물의 생장에 미치는 영향)

  • Jang, Hye-Sook;Lee, Sang-Gyu;Moon, Ji-Hye;Pak, Chun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.460-467
    • /
    • 2009
  • This research was conducted for the purpose of investigating the influence substrates addition such as germanium or Granite porphyry gravel have on the growth of foliage, on the inorganic compositions of leaves as well as on root activity, in order to discover effective means of introducing plants to the indoors. Syngonium podophyllum, Dracaena sanderiana, Epipremnum aureum and Hedera helix were used as study subjects to which soil (mixed top-soil: Sunshine Mix No. 2, USA), tap water, tap water with germanium (300g), tap water with Granite porphyry gravel (300g) were added respectively and formulated. Studies on growth variations according to substrates addition indicate that growth of Syngonium podophyllum was most sluggish under tap water only treatment. Plant growth was most active under geranium-gravel treatment. In the case of Dracaena sanderiana, treatment of substrates addition had no meaningful influence on plant growth. However, the growth of Epipremnum aureum and Hedera helix was also shown to be most active under geranium-gravel treatment. Geranium-gravel treatment was shown to be particularly beneficial for root length, number of roots and dry weight. Root activity was analyzed on ten day intervals and there was discernable difference in the root activity of all the plants according to the varying treatments. In the case of the Syngonium podophyllum, the root activity was sluggish in all three types of treatment on the 10th day but improved gradually. On the 30th to the 50th day of the experiment, the root activity was found to be best under the Granite porphyry gravel treatment. In the case of the Dracaena sanderiana, the root activity was most active under the geranium-gravel treatment from the 10th to the 40th day but deteriorated from the 50th day. However, there was no significant different in all three treatments from the 60th day onwards. Analysis of the inorganic components of the leaves indicates that, while Ca and Mg were higher in the geranium than in the Granite porphyry gravel, they do not directly influence the content of inorganic components in the leaves. The results indicate that Epipremnum aureum and Hedera helix grow better under hydro-culture than when grown in soil and growth under hydro-culture is shown to increase when germanium is added to tap water.

Effect of Sodium Chloride Containing-Composts on Growth of Lettuce (Lactuca sativa L.) and Chemical Properties of Salt Accumulated Plastic Film House Soils (퇴비중 NaCl 함유량별 시설재배 상추의 생육반응과 토양 화학성 변화)

  • Yang, Jang-Souck;Lee, In-Bog;Kim, Ki-Duck;Cho, Kwang-Rae;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • The raw food waste of Korea contained markedly high sodium chloride and such high sodium chloride concentration in the soil is a factor limiting plant growth and impairing soil physicochemical properties. This study was carried out to assess the effect of NaCl-containing compost on the growth of lettuce(Lactuca satjva L.) and on the soil chemical properties. For the experiment, six treatments applying 0, 0.5, 1, 3, 6, and 9% NaCl-containing composts at the rate of $20Mg\;ha^{-1}$ were conducted established in a greenhouse. Growth measurements, chemical analysis of lettuce foliage, and soil chemical properties after the harvest were investigated. Lettuce yield in the treatments applied to composts over 3% NaCl was gradually reduced and mortality of lettuce as well as Na concent ration of lettuce foliage progressively increased with successively higher NaCl concentration of composts. With an increase of NaCl concentration of composts, the values of ESP and exchangeable sodium concentration in the surface soil were significantly increased. Especially, ESP of surface soil in the treatment incorporated with 9% NaCl-containing compost after the harvest attained by about 15, suggesting that sodification of surface soil under a greenhouse condition can occur when the compost over 9% NaCl is applied to soil. In conclusion, the application of over 3% NaCl-containing compost at the rates of $20Mg\;ha^{-1}$ can cause undesirable influences in plant growth and also the treatments of over 6% NaCl-containing composts can create conspicuous deteriorations in soil chemical properties in the current year.

  • PDF

Indicators for the Quantitative Assessment of Tree Vigor Condition and Its Theoretical Implications : A Case Study of Japanese Flowering-cherry Trees in Urban Park (도시공원에 식재된 왕벚나무 수종을 중심으로 한 수목활력도의 정량평가지표 개발 및 이론적 고찰에 관한 연구)

  • Song, Youngkeun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.57-67
    • /
    • 2014
  • The vigor condition of trees is an important indicator for the management of urban forested area. But difficulties in how to assess the tree vigor condition still remain. Previous efforts were limited in the 1) measurement of single indicator rather than using multiple indices, 2) purpose-oriented measurement such as for air-pollution effect or specific pathological symptom, and 3) ordinal-scale evaluations by field crews 4) despite human errors based on his/her experiences or prior knowledge. Therefore, this study attempted to develop a quantitative and objective methodology for assessing tree vigor condition, by measuring multiple modules and building the profile inventory. Furthermore, the possibility and limitations were discussed in terms of schematic frames describing tree vigor condition. The vigor condition of 56 flowering cherry plants in urban park were assessed by in-situ measurements of following eight items; growth of crown(Gc), growth of shoots, individual tree volume(Vol), plant area index, woody area index, leaf area index, leaf chlorophyll content(Lc) and leaf water content(Lw). For validation, these measurements were compared with the ranks of holistic tree vigor condition, which were visually assessed using a 4-point grading scale based on the expert's knowledge. As a result, the measures of each evaluation item successfully highlighted a variety of aspects in tree vigor condition, including the states of both photosynthetic and non-photosynthetic parts. The variation in the results depending on evaluated parts was shown within an individual tree, even though the broad agreement among the results was found. The result of correlation analysis between the tested measurements and 4-point visual assessment, demonstrated that the state of water-stressed foliage of the season (Lw) or the development of plant materials since sapling phase (Vol) could be better viewed from the outer appearance of trees than other symptoms. But only based on the visual assessment, it may be difficult to detect the quality of photosynthesis (Lc) or the recent trend in growth of trees (Gc). To make this methodology simplified for the broad-scale application, the tested eight measurements could be integrated into two components by principal component analysis, which was labelled with 'the amount of plant materials' and 'vigor trend', respectively. In addition, the use of these quantitative and multi-scale indicators underlies the importance of assessing various aspects of tree vigor condition, taking into account the response(s) on different time and spatial scale of pressure(s) shown in each evaluated module. Future study should be advanced for various species at diverse developing stages and environment, and the application to wide areas at a periodic manner.

Analytical Method of Bentazone Residue in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 bentazone의 분석법 확립)

  • Kim, Young-Hak;Lee, Su-Jin;Song, Lee-Seul;Hwang, Young-Sun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.149-159
    • /
    • 2011
  • Bentazone is benzothiadiazole group herbicide, and used to foliage treatment. This herbicide have already been widely used for cereals and vegetables planting in worldwide. This experiment was conducted to establish a determination method for bentazone residue in crops using HPLC-UVD/MS. Bentazone residue was extracted with acetone (adjusted pH 1 with phosphoric acid) from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover bentazone from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The bentazone was quantitated by HPLC with UVD, using a YMC ODS AM 303 ($4.6{\times}250$ mm) column. The crops were fortified with bentazone at 3 levels per crop. Mean recovery ratio were ranged from 82.0% for a 0.2 mg/kg in apple to 97.9% for a 0.02 mg/kg in Chinese cabbage. The coefficients of variation were ranged from 0.5% for a 0.02 mg/kg in soybean to 9.7% for a 0.02 mg/kg in Chinese cabbage. Quantitative limit of bentazone was 0.02 mg/kg in representative five crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of bentazone in agricultural commodities.

Primary Productivity and Matter Economy of a Maize Plant Population. III. Phosphorus Economy in Relation to Dry Matter Production (옥수수 개체군의 일차생산성과 물질경제. 3. 건물생산과 인경제)

  • Huque, M. Anwarul;Seung-Dal Song
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 1981
  • Phosphorus dynamics in terms of specific absorption rate, inflow and outflow rates. turnover rate, demand and supply, and utility index of a high yield Zea mays L. cv. Bokgyo field were evaluated using an analysis of successive production structures. The analysis was adopted for measuring quantitative changes in the population by stratified clip technique on every two weeks during the growing season. The seasonal trends of specific absorption rate (2. 4 mg P/g/day in maximum) and specific absorption efficiency (0. 03) closely correlated with that of relative growth rate of the population. The overall inflow and outflow of phosphorus was 3.41 g P/$m^2$/yr showing the maximum inflow of 2.99 g P/$m^2$/month in July. While the maximum phosphorus standing crop was 1.4 g P/$m^2$ showing the maximum turnover rate of 178% in late June. The accumulation of phosphorus along plant height declined monotonically in stems and roots but increased in foliage after heading. The proportions of the total annual demand of phosphorus were 24.4% for leaves, 22.5% for stems, 49.6% for fruits and 3.5% for roots. These demands were met with internal (18.2 %) and external (81.8 %) supplies. The seasonal highest phosphorus utility index was 1,091 in early June, while the average value was 655.

  • PDF

Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

  • Kim, Min Jeong;Shim, Chang Ki;Kim, Yong Ki;Hong, Sung Jun;Park, Jong Ho;Han, Eun Jung;Kim, Jin Ho;Kim, Suk Chul
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more ${NO^-}_3-N$ than ${NH^+}_4-N$. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.