• Title/Summary/Keyword: Folding wing

Search Result 12, Processing Time 0.027 seconds

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

Flutter Characteristics of a Morphing Flight Vehicle with Varying Inboard and Outboard Folding Angles

  • Shrestha, Pratik;Jeong, Min-Soo;Lee, In;Bae, Jae-Sung;Koo, Kyo-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • Morphing aircraft capable of varying their wing form can operate efficiently at various flight conditions. However, radical morphing of the aircraft leads to increased structural complexities, resulting in occurrence of dynamic instabilities such as flutter, which can lead to catastrophic events. Therefore, it is of utmost importance to investigate and understand the changes in flutter characteristics of morphing wings, to ensure uncompromised safety and maximum reliability. In this paper, a study on the flutter characteristics of the folding wing type morphing concept is conducted, to examine the effect of changes in folding angles on the flutter speed and flutter frequency. The subsonic aerodynamic theory Doublet Lattice Method (DLM) and p-k method are used, to perform the flutter analysis in MSC.NASTRAN. The present baseline flutter characteristics correspond well with the results from previous study. Furthermore, enhancement of the flutter characteristics of an aluminum folding wing is proposed, by varying the outboard wing folding angle independently of the inboard wing folding angle. It is clearly found that the flutter characteristics are strongly influenced by changes in the inboard/outboard folding angles, and significant improvement in the flutter characteristics of a folding wing can be achieved, by varying its outboard wing folding angle.

Aeroelastic Analysis in Frequency Domain for Wings with Double-Folding Mechanism (주파수 영역에서의 2단 접는 날개 공탄성 해석)

  • Kang, Myung-Koo;Kim, Ki-Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.104-113
    • /
    • 2006
  • To identify aeroelastic characteristics of wings with double-folding mechanism, aeroelastic analyses are performed. There are four wing models which consist of one linear model and three nonlinear models. The nonlinear models have one or two freeplay nonlinearties. The describing function method is used to approximately examine nonlinear effects. The aeroelastic module in MSC/NASTRAN is used to study the aeroelastic characteristics of the considered wing models. The effects of the folding mechanism and amplitude ratio are examined. As the amplitude ratio increases, the flutter speeds approach to those of the wing model with only one nonlinearity. The numerical results show that the flutter speeds of the wings with double-folding mechanism can be lower or higher than those of the wing model with only one folding mechanism depending upon the direction of the second folding mechanism.

Analysis of Folding Wing Deployment with Aero and Restraint Effects (공기력 및 구속 효과를 고려한 접힘 날개 전개 성능 분석)

  • Kim, Seung-il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.533-539
    • /
    • 2015
  • Recently, guided missiles applies folding wings to save space. During wing deployment, aero force acting on wing effects significantly on deployment performance, usually aerodynamic coefficient are calculated by CFD analysis. However, Missile Datcom can calculates estimated aerodynamic coefficient very quickly by assuming wing deployment motions as dihedral angle of wing. If missile has external store, wings may need to be folded on top of each other. In this case, one of wing help or interrupt other wing deployment, locking effect. In this study, both effects were included on wing deployment performance analysis to criteria for wings locked condition and formulated wing deploy performance, and compared with wind tunnel test data. Analysis predicted vulnerable wind direction of wing deployment very well.

An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV (접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션)

  • Lee, Seungjin;Lee, Jungmin;Ahn, Jeongwoo;Park, Jinyong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • The aerial launching UAV(Unmanned Aerial Vehicle) mainly uses a set of folding tandem wings to maximize flight performance and minimize the space required for mounting in a mothership. This folding tandem wing has a unique aerodynamic problem that is different from the general type of fixed wing aircraft, such as the rear wing interference problem caused by the wing of the front wing wake and vortex, and the imbalance of the pivot moment applied to the front and rear wings when the wing is deployed. In this paper, we have modeled and simulated various cases through computational fluid dynamics based on the finite volume method and analyzed various aerodynamic phenomena of the tandem wing type aircraft. We find that the front wing shall be installed higher than the rear for minimizing the wake influence and the rear wing can be deployed faster than the front because of the pivot moment due to aerodynamic forces. Also, considering the pivot moment due to aerodynamic force, the rear wing can be deployed much faster than the front wing. Therefore, it is necessary to consider it when developing the wing deploy mechanism.

A Study on the Development of Integrated Folding Composite Wing Using Optimal Design and Multiple Processes (최적설계 및 다중공정을 적용한 일체형 접이식 복합재료 날개 개발 연구)

  • Lee, Jong-Cheon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • This research was carried out to develop an integrated folding wing made from carbon composite materials. Design requirements were reviewed and composite wing sizing was conducted using design optimization with commercial software. Three composite manufacturing processes including hot-press, pultrusion, and autoclave were evaluated and the most suitable processes for the integrated wing fabrication were selected, with consideration given to performance and cost. The determined manufacturing process was verified by two design development tests for selecting the design concept. Stiffness and strength of the composite wing were estimated through structural analyses. The test loads were calculated and static tests about design limit load and design ultimate load were performed using both wings. As a result, the evaluation criterions of the tests were satisfied and structural safety was verified through the series of structural analyses and testing.

Unsteady Subsonic Aerodynamic Characteristics of Wing in Fold Motion

  • Jung, Yoo-Yeon;Kim, Ji-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • Aerodynamic characteristics of a wing during fold motion were investigated in order to understand how variations or changes in such characteristics increase aircraft performance. Numerical simulations were conducted, and the results were obtained using the unsteady vortex lattice method to estimate the lift, drag and the moment coefficient in subsonic flow during fold motion. Parameters such as the fold angle and the fold angular velocity were summarized in detail. Generally, the lift and pitching moment coefficients decreased as the angle increased. In contrast, the coefficients increased as the angular velocity increased.

Characteristics of Wind Flow Variation with Wing Development of Space-Reduced Damper (공간축소형 댐퍼의 날개개도에 따른 풍량변화 특성평가)

  • Baek, Geun-Uk;Baek, Nam-Do;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.113-120
    • /
    • 2021
  • An experimental device was designed to control the opening of a damper via operating the folding blade drive of the device and to control the amount of air flowing through the damper. In addition, an inverter was installed in the blower to control its fan rotation speed and hence the amount of air flowing through the damper. An experimental study was conducted on the opening of the folding blade damper and changes in the rotational speed of the blower. From the results, the theoretical air volume of the folding blade damper and experimental air volume were observed to be in good agreement within an error range of ±3%. As the mass flow rate of the air passing through the folding blade damper increases proportionally with the changes in damper opening and fan rotation speed, the performance of the damper can be controlled proportionally. The mass flow rate was also observed to increase linearly; therefore, the mass flow rate of the air passing through the folding blade damper increases proportionally with changes in the rotation speed of the blower, such that the performance of the damper is proportional to a constant air volume even with varying rotation speeds of the blower.

A Study on Aerodynamic Loads of a Deploying Wing Launched from a Mobile Platform (이동식 플랫폼에서 발사되는 비행체의 날개 전개 공력 하중에 관한 연구)

  • Lee, Younghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2019
  • In this study, a aerodynamic loads prediction to design a deploying device of folded fin was introduced. In general, resultant flow conditions around the fin are used to obtain deploying moments and required energy. However, when it comes to the air vehicles launched from a mobile platform, more specific flow conditions can be provided. With the conditions, the design criteria can be calculated more realistically. In this study, therefore, aerodynamic moments induced by aerodynamic loads and energy required in deployment were calculated using wind-over-deck(WOD) velocity, combination of a platform velocity and a wind velocity. For the calculation, wind tunnel test was conducted on various angle of attack, side slip angles, and folding angles. It was found that the aerodynamic moments and the energy required in deployment using the non-uniform flow due to the velocity components were less than those using the uniform flow without the components.

Improvement of Flapping Air Vehicle by Using Axiomatic Design (공리적 설계를 이용한 Flapping 비행체의 성능 개선)

  • 성호석;차성운;이경수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.684-688
    • /
    • 1997
  • The human species has been able to fly for about a century - with the help of aircraft of various kinds. Recently. air vehicles which are like an insect or a bird with flapping wings have been appeared, although many of them are experimental flight vehicle. However, the rubber-powered flapping vehicle is put to practical use such as toy, which flies for some seconds. In this paper, we analyze and evaluate above the rubber-powered flight vehicle using axiomatic design and will present new four flapping wing model.

  • PDF