• 제목/요약/키워드: Foil air bearing

검색결과 75건 처리시간 0.03초

PEM 연료전지용 터보 블로워의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability Test for PEM Fuel Cell Turbo-blower)

  • 이용복;이희섭;정진택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.37-43
    • /
    • 2008
  • The durability test of turbo-blower for PEM fuel cell is very important process of BOP development. It is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the air supply system to increase the reliability and to reduce the lifetime cost. In this study, turbo-blower supported by oil-free bearing is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The impeller of blower was adopted mixed type of centrifugal and axial. So, it has several advantages for variable operating condition. The turbo-blower test results show maximum parasitic power levels below 1.67kW with the 30,000 rpm rotating speed, the flow rate of air has maximum 163SCFM(@PR1.1). For proper application of FCV, these have to durability test. This paper describes the experiment for confirming endurance and stability of the turbo-blower for 500 hours.

외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향 (Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing)

  • 조현우;김영우;권용범;김태호
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

분산발전용 75kW급 마이크로터빈의 시제개발 - 설계/제작 및 자력운전 시험 - (Prototype Development of A 75kW Class Microturbine - Design/Manufacture and Self-Sustaining Test -)

  • 오종식;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.307-313
    • /
    • 2002
  • In the paper, the prototype development of a 75kW class microturbine for the distributed generation market is partly presented which has continued with the government funding. In the introduction, an overview of the development of microturbines in the world is presented. A series of development procedures are shown with design, manufacture and self-sustaining tests. During the first year, aerodynamic and structural design/analysis, mechanical design are performed for the compressor, the turbine and the combustor. A premixed lean burn combustor technology is used fur the low emission requirements. Foil air bearings and high-speed motors are employed for higher reliability. The self-sustaining conditions have been successfully achieved with the prototype manufactured engine as a preceding operation.

  • PDF

300HP급 초고속 전동기용 회전체의 동력학적 해석 및 설계 (Design and Dynamic Analysis of Rotor for 300HP Class Super High-Speed Motor)

  • 이용복;이희섭;김승종;김창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.16-18
    • /
    • 2007
  • The Super High-Speed Motor is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The rotordynamic stability was predicted using the numerical analysis of air foil bearings. From this study, the stability of rotor of the Super High-Speed Motor was confirmed by campbell diagram and logarithmic decrement.

  • PDF

AFB으로 지지된 탄성회전체의 위험속도 통과시험 (A test on passing through bending critical speed of Flexible Rotor supported by AFB)

  • 이영섭;염병용;김진형;김명섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.354-359
    • /
    • 2001
  • A flexible rotor was smoothly passed through its bending critical speed, which is supported by AFB. Then, maximum magnitude of the rotor vibration at the middle point was 25${\mu}$m. The test rig was largely consisted of air turbine, multi-leaf type air foil bearing and flexible rotor and its bending critical speed was 32,600 rpm. And the balancing system and method for field balancing of the flexible rotor were developd successfully.

  • PDF

가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측 (Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings)

  • 황성호;문창국;김태호;이종성;조경석;하경구;이창하
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.

200 마력급 터보 블로워 적용을 위한 자기베어링 설계 (Design of Magnetic Bearings for 200 HP Class Turbo Blower)

  • 박철훈;윤태광;박준영
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.12-18
    • /
    • 2015
  • Recently, the development trend of turbomachinery is high capacity and high efficiency. Most of turbomachinery in the market are adopting ball bearings or air foil bearings. However, ball bearings have a limit for high speed product over $2.0{\times}10^6DN$(product of the inner diameter of the bearing in mm (D) and the maximum speed in rpm (N)). Air foil bearings have a limit for high axial load for high power products over 200~300 HP(horse power). Magnetic bearing is one of the solutions to overcome the limits of high speed and high axial load. Because magnetic bearings have no friction between the rotor and the bearings, they can reduce the load of the motor and make it possible to increase the rotating speed up to $5.0{\times}10^6DN$. Moreover, they can have high axial load capacity, because the axial load capacity of magnetic bearing depends on the capacity of the designed electromagnet. In this study, the radial and thrust magnetic bearings are designed to be applied to the 200 HP class turbo blower, and their performance was evaluated by the experiment. Based on the tests up to 26,400 rpm and 21,000 rpm under the no-load and load condition, respectively, it was verified that the magnetic bearings are stably support the rotor of the turbo blower.

고압 터보 Blower "Greenpressor" 개발 (Commercial Development of a High Pressure Turbo Blower "Greenpressor")

  • 최문창;바르탄 뻬뜨로샹;나탈리아 자칼로바
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.323-323
    • /
    • 2003
  • Many recent development activities suggest the possibility of a high-speed turbo(centrifugal) compressor or blower for the industrial application of compressed air supplying system when used with the most advanced high-speed motor, inverter technology, and advanced bearing for high rotational speed. The problems to be overcome are of reliability, the application of mass production methods, cost effective manufacture and competitive running costs. This presentation is not focused on a specific technology advances but on an overall review of our recent experiences while we have developed the high pressure turbo blower for the commercial purpose.

  • PDF

가스 포일 베어링 범프 구조의 1 자유도 가진/가압 실험을 통한 주파수 의존 동특성 규명 (Identification of Frequency-Dependent Dynamic Characteristics of a Bump Structure for Gas-Foil Bearings via 1-DOF Shaker Tests Under Air Pressurization)

  • 심규호;박지수;이상훈
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1029-1037
    • /
    • 2015
  • 최근 회전 시스템의 고속화 경향에 따라 회전체 동역학적 안정성의 중요성이 부각되었다. 고속회전 시스템에 적용되는 가스베어링의 동특성을 규명하는 것은 회전체의 거동을 예측하는데 상당히 중요하다. 본 연구에서는 대표적인 가스베어링인 가스포일베어링의 범프 구조에 대하여 가진실험을 수행하고 가진 주파수에 따른 동특성을 측정하였다. 실험 결과, 범프 구조의 강성은 주파수에 따라 증가하였고 감쇠는 감소하였다. 또한, 가압 조건에서의 동특성은 범프 구조의 동특성 보다 낮은 값을 가졌다. 본 실험을 통해 범프 구조의 주파수 의존 동특성의 경향을 파악하였으며 가스포일베어링의 동특성에 윤활막이 미치는 영향에 대해 확인하였다. 또한 두 가지 동특성 계산 방법을 제시하여 실험결과를 통해 효과 적인 동특성 계산 방법에 대해 비교 고찰하고 범프 구조와 윤활막의 동특성을 비교 하였다.

A Computational Analysis of Air Entrainment with a Nip Roller

  • 이재용
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2002년도 추계학술발표논문집
    • /
    • pp.81-90
    • /
    • 2002
  • Air entrainment of a winding roll with a nip roller was studied numerically. The amount of air entrainment between two rotating rollers was obtained by solving lubrication equation, Reynolds equation, which neglect the existence of a web. However, the numerical model of this study included the web existence, therefore it considered the two lubricating air films between a winding roll and a web and also between a nip roller and the web. The pressure profiles and gap profiles of the two films were obtained by solving lubrication equation for the two air films and force balance equation of the web. Ballooning phenomenon was examined in terms of nip force, wrap angle, web stiffness, web speed, and web tension. This ballooning phenomenon caused by the back flow of the air film blocked by the nip roller. Air entrainment of the two numerical models was compared.

  • PDF