• Title/Summary/Keyword: Fog

Search Result 722, Processing Time 0.035 seconds

Improvement of Automatic Present Weather Observation with In Situ Visibility and Humidity Measurements (시정과 습도 관측자료를 이용한 자동 현천 관측 정확도 향상 연구)

  • Lee, Yoon-Sang;Choi, Reno Kyu-Young;Kim, Ki-Hoon;Park, Sung-Hwa;Nam, Ho-Jin;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.439-450
    • /
    • 2019
  • Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer's own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.

Effect of Greenhouse Cooling and Transplant Quality Using Geothermal Heat Pump System (지열-열펌프 시스템의 온실냉방 및 육묘 효과)

  • Lee, Jae-Han;Lee, Yong-Beom;Kwon, Joon-Kook;Kang, Nam-Jun;Kim, Hak-Joo;Choi, Young-Hah;Park, Jin-Myeon;Rhee, Han-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.211-216
    • /
    • 2006
  • This study was carried out to investigate the effect of greenhouse cooling by a geothermal heat pump system on greenhouse temperature and growth of vegetable transplants in summer season. Greenhouse air temperature in day time was $3-4^{\circ}C$ lower in fog plus shading system than in shading, while in night time that was $5-7^{\circ}C$ lower in geothermal heat pump (GHP) plus shading system compared to shading or fogplus shading. system. Plant height of cucumber, tomato and hot pepper transplants was shortened in GHP plus shading compared to shading or fog plus shading system. And Leaf area and dry weight were slightly decreased in GHP plus shading compared to the other systems. Therefore, healthy transplant index on cucumber, tomato and hot pepper was higher in GHP plusshading than in shading or fogplusshading system.

A Study on the Fog Detecting System Using Photo Sensor (광센서를 이용한 안개 탐지 시스템 연구)

  • No, Byeang-Su;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.643-648
    • /
    • 2013
  • In this paper, we developed a system which can detect and can alarm about the sailing provocative climate by using a photo. The research on domestic shipbuilding industry and in IT fusion technology is under construction, but a reliable safety device which can alarm a sailor about the circumstances of the fog and rain during ship operation as soon as possible due to the constant state in domestic. In this paper, a compact, for system low-power transceiver and data processing equipment for sensing were developed, also a performance evaluation got accomplished with simulation analysis. In results, it is operating normally at least 32.36[dB] and maximum values f 89.20[dB] in the domestic, and 32.55 to 60.66[dB] in the outdoors.

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha;Vaitilingom, Mickael;Zhang, Zenghui;Liyana-Arachchi, Thilanga P.;Stevens, Christopher S.;Hung, Francisco R.;Valsaraj, Kalliat T.
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.139-159
    • /
    • 2018
  • Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

Two-Stage Design Optimization of an Automotive Fog Blank Cover for Enhancing Its Injection Molding Quality (자동차용 안개등 커버의 사출성형 품질 향상을 위한 2 단계 설계 최적화)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Pyo, Byung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1097-1103
    • /
    • 2010
  • Injection pressure, an important factor in the filling procedure, should be minimized to enhance injection molding quality. In addition, warping deformation and weld lines, which are representative failures, should be avoided to enhance injection molding quality. To improve injection molding quality, the design procedure for an automotive fog blank cover is divided into two stages. In the first stage, we optimally obtain injection molding process variables that minimize injection pressure and warping deformation by using design of experiments, approximation and optimization techniques equipped in PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration and Design Optimization) tool. Then, we determine the thickness of the automotive fog blank cover that enables us to avoid generating weld lines. The design results we obtain in this study are found far better than those of the initial design, which demonstrates the effectiveness of our design method.

A Study on the Control of the Temperature and Relative Humidity in Greenhouse by Adjusting the Amount of Natural Ventilation and Fog Spray Quantity (자연환기량과 포그분무량 조절에 의한 온실 온습도의 동시제어 기법 연구)

  • Kim, Youngbok;Sung, Hyunsoo;Hwang, Seungjae;Kim, Hyeontae;Ryu, Chanseok
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.31-50
    • /
    • 2016
  • To develope a greenhouse fog cooling system to control the temperature and relative humidity simultaneously to the target value, a theoretical analysis and experiments were done. The control process includes the measuring of environmental variables, setting and coding of the water and heat balance equations to maintain the target temperature and relative humidity in greenhouse, calculating of the open level of the greenhouse roof window that governs the natural ventilation and spray water quantity, and operating of the motor to open/close the roof window and pump to spray for water. The study results were shown to be very good because the average air temperature in the greenhouse was kept to be about $28.2^{\circ}C$ with the standard deviation of about $0.37^{\circ}C$ compared to the target temperature of $28^{\circ}C$ and the average relative humidity was about 75.2% compared to the target relative humidity was 75% during the experiments. The average outside relative humidity was about 41.0% and the average outside temperature was $27.2^{\circ}C$ with the standard deviation of about $0.54^{\circ}C$. The average solar intensity in the greenhouse was 712.9 W. The wind velocity of outside greenhouse was 0.558 m/s with the standard deviation of 0.46 m/s.