• Title/Summary/Keyword: Focus 값

Search Result 312, Processing Time 0.023 seconds

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF