• Title/Summary/Keyword: Focal adhesion

Search Result 92, Processing Time 0.03 seconds

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

CD166 promotes the cancer stem-like properties of primary epithelial ovarian cancer cells

  • Kim, Dae Kyoung;Ham, Min Hee;Lee, Seo Yul;Shin, Min Joo;Kim, Ye Eun;Song, Parkyong;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.622-627
    • /
    • 2020
  • Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anticancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.

Adhesion of Human Osteoblasts Cell on TiN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong Hung;Kim, Sun-Kyu;Le, Vinh Van;Kwon, Byoung-Se
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.264-268
    • /
    • 2008
  • Interaction between human osteoblast and TiN films was conducted in vitro. TiN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). TiN films, glass substrates and Ti films were cultured with human osteoblasts for 48 and 72 h hours. Actin stress fiber patterns and microtubules of osteoblasts were found slightly more organized and distributed on TiN films compared to those on the Ti films and the glass substrates. Human osteoblasts also showed slightly higher cell attachment, proliferation, and focal contact adhesion on TiN films compared to those on Ti films and glass substrates. Our results demonstrated that TiN films showed slightly better cellular adhesion of osteoblasts than Ti films and glass substrates in a short-time culture period.

On the Dynamic Characteristics of Cell Contact by Analyzing TIRE Images (전반사 형광 이미지 분석을 통한 세포 부착점의 운동 특성에 관한 연구)

  • Lee, Yong-Ku;Jin, Song-Wan;Koo, Sang-Mo;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.380-387
    • /
    • 2007
  • We carried out an image analysis of living cells forming their contacts at the bottom of the cell culturing substrate. In order to visualize the contact area selectively, we adopted total-internal-reflection-fluorescence (TIRF) method, which can illuminate the specimen volume within only several hundred nano-meters above the substrate. From the fluorescent intensity of the TRF image, we could calculate the distance of the cell surface from the substrate. As a result, we visualized the origin of cell contacts, their movements, and the change of cell-contact type from the close-contact into focal-contact with information of its vertical displacement representing the temporal evolution process of the three-dimensional cell-surface-profile near the contact area during this metamorphosis.

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

Mitigative Effect of Sipjeondaebo-tang on RhoA Activation in Cold-Exposed Vascular Cells (저온 노출된 혈관 세포 내 RhoA 단백질 활성화에 대한 십전대보탕의 억제 효과)

  • Lee, Kangwook;Kim, Myeong-Sun;Kim, Yun-Gyung;Hwang, Hyun-Ha;Go, Ho Yeon;Sun, Seung-Ho;Choi, You-Kyung;Yang, Seung-Bo;Song, Yun-Kyung;Jeon, Chan-Yong;Ko, Seong-Gyu
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.553-562
    • /
    • 2020
  • Objective: To investigate the vasodilatory effect of Sipjeondaebo-tang by inhibiting RhoA activity in vascular cells during cold exposure. Methods: Human vascular endothelial cells and pericytes were pretreated with Sipjeondaebo-tang for 30 min, followed by incubation at 37 ℃ (control) or 25 ℃ (cold exposure) for 30 min. Activation of endothelin-1-mediated RhoA in pericytes was assessed by pretreating the cells with Sipjeondaebo-tang for 30 min, followed by incubation with endothelin-1 at 37 ℃ for 30 min. Western blotting was performed to measure the expression of active RhoA. Endothelin-1 and nitric oxide release from endothelial cells was examined with enzyme-linked immunosorbent assay kits. The formation of stress fibers and focal adhesion complexes was analyzed by immunocytochemistry. Results: Cold treatment activated RhoA in both pericytes and vascular endothelial cells, whereas Sipjeondaebo-tang treatment inhibited this activation. Sipjeondaebo-tang treatment also reversed the cold-mediated production of endothelin-1 and nitric oxide. Cold exposure promoted the formation of stress fibers and focal adhesion complexes by increasing the expression of phospho-focal adhesion complex kinase, whereas Sipjeondaebo-tang treatment suppressed this response. Conclusions: These findings suggested that Sipjeondaebo-tang inhibits cold-induced RhoA activation and its related pathway components, including endothelin-1 and nitric oxide, in vascular cells. Therefore, Sipjeondaebo-tang could be beneficial for the treatment of Raynaud's phenomenon.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.