• Title/Summary/Keyword: Focal Depth

Search Result 150, Processing Time 0.023 seconds

Adaptation in pregnant women: a descriptive phenomenological study using Giorgi's approach (임신 여성의 적응에 관한 Giorgi의 기술적 현상학 연구)

  • Koh, Minseon;Kim, Jisoon;Ahn, Sukhee
    • Women's Health Nursing
    • /
    • v.26 no.4
    • /
    • pp.346-357
    • /
    • 2020
  • Purpose: This descriptive phenomenological study aimed to explore the lived experience and meaning of pregnant women's adaptation. Methods: Ten pregnant women from an ongoing Pregnant Couples' Cohort Study agreed to participate in this study. The data were collected through telephone in-depth interviews regarding what they experienced and felt about pregnancy adaptation. The qualitative data were analyzed using Giorgi's method of descriptive phenomenology. Results: Five core situation components were extracted from the raw data, along with 12 themes and 33 focal meanings. The five core situations were 1) first recognizing the pregnancy, 2) pregnancy-related changes, (3) the upcoming birth, 4) the postpartum period, and 5) parenting. The 12 themes were as follows: "anxiety, pressure, and embarrassment due to pregnancy," "efforts to adapt to physical changes," "efforts to adapt to the psychological difficulties of pregnancy," "efforts to adapt to the financial burden and role changes caused by pregnancy," "connecting with the fetus," "adapting to a new marital relationship centering on the baby," "the frustration of childbirth," "fear of childbirth," "postpartum care, need help with lactation planning," "parenting beyond what I imagined," "dad's willingness to participate in parenting," and "career disconnect and consideration of workplace needs." Conclusion: We identified that pregnant women experience adaptation in physical, psychological, relational, and social aspects. The thematic clusters identified can be used to develop nursing interventions to promote women's adaptation to pregnancy.

The Anatomical Identification-key of Dipasci Asperi Radix, Phlomoidis Radix and Dipsaci Japonici Radix (천속단(川續斷)과 한속단(韓續斷), 일본속단(日本續斷)의 내부형태감별)

  • Lee, Guemsan
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • Objectives : The roots of Dipsacus asper had been used as the herbal medicine "Cheon-Sokdan" in Korea. Moreover, the roots of Phlomoides umbrosa were used as "Han-Sokdan." In the present study, a comparative anatomical comparison of Cheon-Sokdan, Han-Sokdan, and Ilbon-Sokdan were conducted, because Ilbon-Sokdan, the roots of Dipsacus japonicus, was regarded as substitute of Cheon-Sokdan. Methods : For this study, permanent preparations were made using a paraffin embedding method. Anatomical features of these three Sokdans were observed using a light microscope. Results : The starch grains of parenchyma cells and the amounts of calcium oxalate crystals hardly differed among the three plants. Particularly, the longitudinally-sectioned vessels of the three plants showed a wide variety depending on the focal depth of the light microscope. Therefore, these features could not be considered as obligate criteria for distinguishing these plants. The shape of the xylem was linear in Cheon-Sokdan and Ilbon-Sokdan, whereas that in Han-Sokdan was wedge-shaped. The phloem of Cheon-Sokdan and Ilbon-Sokdan were rhomboid, whereas that of Han-Sokdan was thimble-like. Therefore, the shape of xylem and phloem appeared as good criteria for distinguishing Han-Sokdan from the other plants studied. Cheon-Sokdan and Ilbon-Sokdan showed characteristics similar in many parts. However, in the xylem of Ilbon-Sokdan, fiber bundles were more developed than those of Cheon-Sokdan. Therefore, the development of fiber bundles in xylem was considered suitable for distinguishing between Cheon-Sokdan and Ilbon-Sokdan. Conclusions : The identification-keys established in this study would be helpful for identifying microscopic features among the three Sokdans.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

A study on the laser surface hardening of SM 45C steel (SM 45C강의 레이저 표면경화처리에 관한 연구)

  • 나석주;김성도;이건이;김태균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 1987
  • High power lasers provide a controllable and precise energy source in surface transformation hardening. A careful control of the process is needed in order that the surface layer of the material reaches the austenizing temperature, but that it does not melt. In order to achieve this the results of theoretical and experimental studies on the laser surface hardening of a medium carbon steel are described. A two-dimensional computer program, which can be used generally for the determination of transient temperature distributions in welding and heat treatment, was established on the basis of the finite element method. For the confirmation of the accuracy of the numerical analysis, a medium carbon steel (SM 45C) of 5mm thickness was heat-treated with a 1kW CW CO$_{2}$ laser machine, while the traverse speed and the distance from the focal point (defocused distance) were varied. Experimental and numerical results showed a similar tendency in correlations between the hardened zone shape and the process parameters. With increasing beam spot diameter the width and depth of the hardened zone increased for relatively small beam spot diameters, but decreased rapidly after reaching the maximum value, while with increasing traverse speed the width and depth of the hardened zone decreased monotonously. Too small beam spot diameters are to be avoided, since the surface melting would lower the surface hardness and produce an uneven surface which may be unacceptable because of the possible requirement for subsequent machining. It could be observed that for a given traverse speed and laser power input there exists a optimal range of the beam spot diameter, which produce a large width of the hardened zone but no melting on the surface.

Tectonic Features of a Triple-Plate Junction in Hokkaido Using Local Seismic Tomography

  • Kim, So-Gu;Bae, Hyung-Sub;Pak, Sang-Pyo
    • Proceedings of the KSEG Conference
    • /
    • 2005.04a
    • /
    • pp.101-106
    • /
    • 2005
  • The three-dimensional Tomography developed by Kim and Bae(2004) was applied to 64,024 P and 64,618 S wave arrival times observed at 238 seismic stations for 4050 local earthquakes in the depth range from 0 to 300 km in and around Hokkaido, Japan. High and low velocity zones for Vp/Vs were clearly imaged in and around Hokkaido. The upper seismic planes of the double seismic zone (DSZ) were found in the subducted Pacific Plate beneath Hokkaido at depth of 40- 80 km, which produced high seismicity around Hokkaido. The findings of high Vp/Vs anomalies beneath the Moho discontinuity supports an evidence of a surface triple-collision hypothesis prepared by Moriya(1994) that the Kuril Arc(Okhotsk Plate or North American Plate) is colliding against the NE Japanese Arc(Amurian Plate or Eurasian Plate), along and beneath the Hidaka Mountain Range, and at the same time the Pacific Plate is subducting into these two plates, making an equilibrium of tectonic forces along the Hikada Mountain Range (HMR) corner and the central tectonic axis(142 ~ 143E) in Hokkaido. The low Vp and Vs were also found in east and west along the central tectonic axis in which the focal mechanism represents the extensional forces. These phenomena are also consistent with low Bouguer gravity anomalies in this region. It is understood why most of great earthquakes occurred outside Hokkaido where the balance of tectonic forces are breaking from the triple junction of three tectonic forces in Hokkaido.

  • PDF

3D Shape Reconstruction using the Focus Estimator Value from Multi-Focus Cell Images (다초점 세포 영상으로부터 추정된 초점 값을 이용한 3차원 형태 복원)

  • Choi, Yea-Jun;Lee, Dong-Woo;Kim, Myoung-Hee;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • As 3D cell culture has recently become possible, it has been able to observe a 3D shape of cell and volume. Generally, 3D information of a cell should be observed with a special microscope such as a confocal microscope or an electron microscope. However, a confocal microscope is more expensive than a conventional microscope and takes longer time to capture images. Therefore, there is a need for a method that can reconstruct the 3D shape of cells using a common microscope. In this paper, we propose a method of reconstructing 3D cells using the focus estimator value from multi-focal fluorescence images of cells. Initially, 3D cultured cells are captured with an optical microscope by changing the focus. Then the approximate position of the cells is assigned as ROI (Region Of Interest) using the circular Hough transform in the images. The MSBF (Modified Sliding Band Filter) is applied to the obtained ROI to extract the outlines of the cell clusters, and the focus estimator values are computed based on the extracted outlines. Using the computed focus estimator values and the numerical aperture (NA) of the microscope, we extract the outline of the cell cluster considering the depth and reconstruct the cells into 3D based on the extracted outline. The reconstruction results are examined by comparing with the combined in-focus portions of the cell images.

A Study on the Quality Control of Transvaginal Ultrasound Transducer using ATS-539 Ultrasound Phantom (ATS-539 초음파 팬텀을 이용한 경질 초음파 검사용 탐촉자의 정도관리에 대한 연구)

  • Park, Ji Hye;Heo, Yeong Cheol;Kim, Yon min;Han, Dong Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.463-472
    • /
    • 2021
  • Demand for examinations using transvaginal transducer with high frequencies is increasing to observe pelvic organs in gynecological ultrasound tests. However, the quality control of the replacement probe in clinical trials is not properly implemented and the evaluation criteria have not been established. Therefore, 58 transvaginal transducers and 20 convex transducers were applied to the ATS-539 ultrasound phantom for 20 ultrasound devices currently in clinical use to obtain their respective images and measure them quantitatively and qualitatively. For quantitative measurements, vertical measurement, horizontal measurement, and focal zone and qualitative measurements, dead zone, axial·lateral resolution, sensitivity, functional resolution, gray scale·dynamic range were performed. Quantitative statistical analysis showed significant differences between the two transducers in the lateral measurement and local area (p<0.05). qualitative comparative analysis showed differences in sensitivity and functional resolution. This occurs due to the difference in frequency between transducers and the transducer's injection geometry. Based on the above experiments, the tolerance for horizontal measurement is raised to 10% (±8 mm), the tolerance for sensitivity is observed up to 6 cm deep, which is 12 cm deep,which is the level of the third quartile (75%). The permissible range of functional resolution is up to 6 (12 cm), 6 (12 cm), 11 (11 cm), 9 (9 cm), 6 (6 cm) target, which is the level of the third quartile (75%). It is considered reasonable to adjust the depth of targets in gray scale·dynamic range to measure at a depth of 2 cm, which is 50% of the depth of 4 cm. As above, the criteria for evaluating the quality of transvaginal transducer for use in the past have been proposed and it is expected that this study will be used as a basic data for the production of phantom exclusively for transvaginal transducer in the future.

The Study on the Factors for Detection of Renal Stone on Ultrasound (초음파 검사에서 신장 결석의 검출 요인에 관한 연구)

  • Sim, Hyun-Sun;Jung, Hong-Ryang;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Purpose: Renal stones are common and typically arise within the collecting system. The renal sinus are contains the collection system, the renal vessels, lymphatcs, fat, and fibrous tissue. Because of the compression of all the large echoes in signal processing, the echo from the renal stone generally cannot be distinguished from large echoes emanating from normal structures of the renal sinus. Use of ultrasonography has been difficult for detecting small renal stone without posterior shadowing and chemical composition of stone. The aim of study was measuring for posterior acoustic shadowing to a stone for various scan parameter and it examines a help in renal stone diagnosis. Material & Methods: The stone was place on sponge examined in a water bath with a 3.5MHz or 7.5MHz transducer(LOGIQ 400, USA). First, tested a variety of gain. Second, tested a variety of dynamic range. Third, tested a variety of focal zone. Fourth, measuring of the echo level for low and high frequency for depth. Results: 1) Average echo level was 98 for low total gain(10 dB) and was 142 for high total gain(40 dB). Posterior acoustic shadowing of renal stone was clear for low gain. 2) Average echo level was 129 for low dynamic range(42 dB) and was 101 for high dynamic range(72 dB). Posterior acoustic shadowing of renal stone was clear for high dynamic range. 3) When stone is in focal zone of transducer, definite posterior acoustic shadow is identified. 4) Stone was clear appeared for high frequency(7.5 MHz) than low frequency(3.5 MHz) and it is not distorted. Conclusion: The demonstration of an posterior acoustic shadow of renal stone dependents on several technical factors such as gain, dynamic range, focus, and frequency. This various factors are a help in renal stone diagnosis.

  • PDF

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.