• Title/Summary/Keyword: Foam extinguisher

Search Result 8, Processing Time 0.023 seconds

A Study On The Development Of An Automatic Fire Extinguishing System For The Engine Compartment Use Of Automobiles (자동차 엔진 화재용 자동 소화 시스템 개발에 관한 연구)

  • Lim, Sung-Muk;Jung, Ki-Chang;Kim, Hong;Kang, Young-Goo;Lee, Chang-Sub
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.57-61
    • /
    • 1996
  • Our goal was to make a cost-effective automatic fire extinguishing system for the engine compartment use of automobiles. We designed this system for the engine compartment. This system consists of 1)foam extinguisher, 2)four nozzles, 3)a pipe arrangement, and 4)an extinguishing device which is equipped with a glass bulb as detector. First and foremost, the extinguishing device was carefully designed to keep the system cost to a minimum. Second, a AFFF foam extinguisher was used because no other fire-fighting agents proved effective against fire in the engine compartment. The AFFF(Aqueous Film Forming Foam) agent which was used in the extinguisher is the 3M company's Light Water. We sought, however, to make other foams by using Halon 1301 and Halon alternatives such as HCFC Blend A, HFC-227ea. We selected these alternatives instead of air in order to raise the expansion ratio of the AFFF agent. By these means we discovered that it is possible to increase the expansion ration of the AFFF agent up to 44:1. We then demonstrated that our automatic fire extinguishing system is the most effective and lowest cost-system yet devised for passenger cars.

  • PDF

A Study on the Application Medium Expansion Foam Extinguisher by a Fire Performance Analysis used Medium Expention Foam Agent (중발포 소화약제 소화성능 분석을 통한 중발포기 적용에 관한 연구)

  • Lee, Jang Won
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.402-408
    • /
    • 2019
  • Purpose: The study want to verify application the medium expantion foam extinguisher of expantion foam rate and fire extinguishing Performance test because the medium expansion system can maintain the discharge distance less affected by air currents, and the foam agent can be used efficiently. Method: For the study, the medium-expansion testing apparatus was manufactured and with synthetic surfactant foam agent of (class B) fire extinguishing model, and Fire Performance was analyzed for foam expansion rate and the fire agent consumption was measured and analyzed. Results: We measured the medium-spray testing apparatus and found that the expansion rate was 26.1 times. The test results of a 20-unit fire extinguishing model show that the extinguishing time is faster than the high and low foam expansion. It has been analyzed that it is possible to apply a hand-operated with a hose reel or medium expansion apparatus. Conclusion: Considering that the foaming agent and the extinguishing performance of the medium foam ratio are excellent, It is necessary to introduce the technical standards of medium foam agent for the introduction of hand-operated equipment, such as hose reel or portable medium foam apparatus.

THE DEVELOPMENT OF THE EM-$200^{TM}$ GAS-FILLED AFFF FIRE EXTINGUISHER FOR AUTOMATIC FIRE SUPPRESS10N SYSTEMS IN THE ENGINE COMPARTMENT OF AUTOMOBILES

  • Jung, Ki-Chang;Kim, Hong;Kang, Young-Goo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.598-605
    • /
    • 1997
  • In recent years, the number of vehicle fires, as well as the number of motor vehicles, has been increasing rapidly. Therefore, several types of automatic fire suppression systems for the engine compartment of automobiles have been developed to extinguish automobile fires, and most of these systems use halon 1301 as a fire extinguishing agent. Due to environmental concerns, the phase-out of halons has been announced, so now there is a need to replace halon 1301. For this, a 1,1,1,2,3,3,3-heptaflouropropane (HFC-227ea, FM-$200^{TM}$) gas-filled Aqueous Film- Forming foam (known as AFFF) extinguisher was devised even though air foam extinguishers could be used. This is because the air in the foam bubbles is a source of oxygen required for the combustion reaction. It can be surmised that it is possible to increase the fire extinguishing efficiency of AFFF by filling in foam bubbles with a gaseous extinguishing agent. The best choice is the FM-$200^{TM}$ gas-filled AFFF, Which has the maximum expansion ratio of 62:1. This makes it possible for the expanded foam to rapidly fill the engine compartment.

  • PDF

The Development of an Environmental-Friendly Foam Extinguisher Using a Natural Surfactant (천연계면활성제를 이용한 친환경적 포소화약제 개발)

  • Kim, Jeong-Hun;Lee, Jung-Yun;Kim, Hong;Kim, Eung-Sik;Lee, Myoung-Bo;Kim, Dong-Hyun;Jung, Ki-Chang
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.69-73
    • /
    • 2007
  • In this research, an environmental-friendly foam extinguisher was newly developed using a natural surfactant as its composition. Two criteria were applied to verify its extinguishing performance and environmental attraction. One is unit 2 model by "Standards of Model Approval and Inspection Technology for Portable Fire Extinguishers" presented in Korea Fire Equipment Inspection Corporation. The other is Terrestrial Plants, Growth Test and Fish, Acute Toxicity Test presented in Korea Institute of Toxicology(Korea Research Institute of Chemical Technology). Test results showed that the extinguishing performance was 5 unit of general fire Class A, the $LC_{50}$ by germination was 75(g/kg) and the $EC_{50}$ by growth was 62(g/kg) through Terrestrial Plants, Growth Test, and also the toxicity was 6658 ppm in Fish, Acute Toxicity Test. The numerical values were highly evaluated than other fire extinguishing agents being commercialized in domestic. The results also showed suitably in basic physical properties and anti-corrosion properties for making use of fire extinguishing agent.

A Study On The Application Of Foam Extinfuishing Agent By Using Halon 1301 And Halon Alternatives (Halon 1301과 Halon 대체 소화약제를 기포제로 이용한 포 소화약제에 대한 연구)

  • Jung, Ki-Chnag;Lim, Sung-Muk;Lee, Chang-Sub;Kang, Young-Goo;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.29-40
    • /
    • 1996
  • The AFFF(Aqueous Film Forming Foam : 3M Company's Light Water) agent are synthetic compounds that foams which are similar to those produced by protein based materials. The foam extinguishing agent was used In the extinguisher was the AFFF agent. We sought, however, to make other foams by using halon 1301 (CF$_3$Br) and halon alternatives, such as HCFC Blend A($CHCIF_2$ 82%, $CF_3$CHCIF 9.5%m $C_{10}$$H_{16}$ 3.75%), HFC-227ea ($CF_3$ $CHFCF_3$) We selected these alternatives instead of air in order to raise the expansion ratio of the AFFF agent. By these means we discovered that it is possible to increase the expansion ratio of the AFFF agent up to 44:1 and up to 24:1 when HFC-227ea was used as a halon alternatives. Therefore our new foam extinguishing agents can be used in a portable extinguish agents can be used in a portable extinguishers.

  • PDF

Experimental study on applicability of compressed air foam fire water using seawater in train fire at subsea tunnel rescue station (해저터널 구난역 열차화재시 압축공기포 소화용수의 해수 적용성에 관한 실험 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.705-715
    • /
    • 2017
  • In this study, applicability of compressed air form (CAF) fire water was verified in a bid to use the undersea effluent as fire water. Foam collector was fabricated in accordance with KS B ISO 7203-1 (Specification for low expansion foam concentrates for top application to water-immiscible liquids) and the test was conducted using fresh water as fire water for 19 times and using seawater as fire water 15 times that totaled 34 times. Foam reduction time was 237.73 seconds on average with fresh water and 215.60 seconds with seawater, which proved the applicability of CAF fire water using seawater. Besides, window breaker was fabricated to directly extinguish the fire in train and a full-scale fire test was conducted three times. At the final 3rd test, window glass was broken in 2 seconds to make the hole for fire extinguishing and suppressed the fire in 3 seconds using CAF fire extinguisher.

A Study of Analyzing performance of Portable Extinguisher of Medium Expansion Foam (휴대용 중발포 소화기 성능 분석 연구)

  • Kim, Sung-Soo;Kong, Il-Chean;Lee, Jang-Won;Kim, Jin-Su;Park, Il-Guy;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.105-108
    • /
    • 2012
  • 포소화약제는 물과 혼합시, 물의 표면장력을 저하시켜 공기와 혼합 교반을 통하여 거품을 발생시키는 약제로 소화에 이용되는 소화용수의 효율적 이용을 위하여 이용된다. 특히, 유류화재에 사용시 유면을 거품으로 덮어 질식소화에 적합한 특성을 가지고 있다. 포소화약제는 발포 방식에 따라 저발포, 중발포, 고발포로 나누어지는데 국내의 포소화약제 기준에는 저발포와 고발포의 2가지만을 규정하고 있어, 소화에 더욱 효과적이라 평가되는 중발포 소화기의 이용이 어렵다. 본 연구에서는 휴대용 중발포 소화기를 이용하여 발포실험과 소화실험을 실시하고, 저발포, 중발포, 고발포의 특성을 분석하였다. 결과로 3% 농도로 중발포 소화기 이용시 26.1배의 팽창률을 보였으며, 20단위 화재모형을 32초에 소화시킴으로써 중발포 소화기의 발포, 소화능력을 검증하였다.

  • PDF

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.