• 제목/요약/키워드: Foam Volume

검색결과 150건 처리시간 0.026초

Rare earth coupling agent로 표면개질된 Oyster shell이 친환경 Bio-EPDM 발포체에 미치는 영향 연구 (A Study on the Effect of Oyster Shell Surfase Modified with Rare Earth Coupling Agent on Eco-Friendly Bio-EPDM Foam)

  • 서은호;임성욱;박경순;박은영
    • 한국염색가공학회지
    • /
    • 제33권4호
    • /
    • pp.317-326
    • /
    • 2021
  • In this study, we investigated for Bio-EPDM foam with oyster shell surface modified earth coupling agent. Experiments were carried out to confirm the bio-EPDM/Oyster shell foam applying content of earth coupling agent. The cure characterization were evaluated by measuring the mooney viscosity and oscillating disc rheometer (ODR). Mechanical properties such as hardness, tensile strength, elogation at break and tear strength were measured, and changes of mechanical properties were also evaluated after immersion in NaCl solution. In addition degree of volume change was measured after immersing the Bio-EPDM foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. To evaluate the low-temperature characteristics of Bio-EPDM/Oyster shell, the glass transition temperature was measured using Differential Scanning Calorimeter (DSC). As a result as the content of the earth coupling agent increased up to 3phr, the crosslinking density and mooney viscosity increased, and the mechanical properties and low-temperature permanent compression set improved, but from 4phr, it was rather decreased. The change in the glass transition temperature was insignificant, and the foam cell appeared to be uniform when the earth coupling agent was applied.

천연고무의 가황시스템 및 성형공정에 따른 2단 발포 특성 연구 (A Study on the Vulcanization System and Two-Step Foaming Properties for Natural Rubber Foam)

  • 이선희;박예은;쇼더리 딕시타
    • 한국염색가공학회지
    • /
    • 제35권4호
    • /
    • pp.246-255
    • /
    • 2023
  • In this study, we investigated for natural rubber foam to replace petrochemical-based neoprene foam. Experiments were conducted on vulcanization system and 2-step foaming process of natural rubber. The vulcanization system were EV(Efficient Vulcanization Cure), Semi-EV(Semi-Efficient Vulcanization Cure) and CV(Conventional Vulcanization Cure). In the 2-step foaming process, first molding temperature was 140℃, times were 15, 20, 25, and 30minutes, and the second molding temperature was 160℃, the times 5, 10, 15, and 20minutes. The cure and viscosity characterization were evaluated by oscillating disc rheometer (ODR) and mooney viscosmeter. Various mechanical characteristics, including hardness, tensile strength, elongation at the point of rupture, and tear strength, were quantified. Subsequently, an assessment of alterations in these mechanical attributes was conducted post-immersion in a NaCl solution. In addition degree of volume change was measured after immersing the NR foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. And expansion ratio and shrinkage ratio of NR foam were evaluated for 28 days. As a result the EV vulcanization system showed the least change in physical properties before and after salt water immersion, and the lowest shrinkage ratio for 28 days. In addition it was confirmed that the 2-step foaming optimum condition differed depending on the appropriate vulcanization condition.

NaCl을 Space holder로 이용한 타이타늄 다공체의 특성 (Characteristics of Porous Titanium Fabricated by Space-holder Method using NaCl)

  • 손병휘;홍재근;현용택;김승언;배석천
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.488-495
    • /
    • 2011
  • This study was performed to fabricate the porous titanium foam by space holder method using NaCl powder, and to evaluate the effect of NaCl volume fractions (33.3~66.6 vol.%) on the porosities, compressive strength, Young's modulus and permeability. For controlling pore size, CP titanium and NaCl particles were sieved to different size range of 70~150 ${\mu}m$ and 300~425 ${\mu}m$ respectively. NaCl of green Ti compact was removed in water followed by sintered at $1200^{\circ}C$ for 2 hours. Total porosities of titanium foam were in the range of 38-70%. Pore shape was a regular hexahedron similar that of NaCl shape. Porous Ti body showed that Young's modulus and compressive strength were in the range of 0.6-6 GPa and 8-127 MPa respectively. It showed that pore size and mechanical properties of Ti foams was controllable by NaCl size and volume fractions.

공기 중 축산질병 확산예측을 위한 오픈폼 도입 및 검증 (Validation and Application of OpenFOAM for Prediction of Livestock Airborne Virus Spread)

  • 노현석;서일환;이인복
    • 한국농공학회논문집
    • /
    • 제56권1호
    • /
    • pp.81-88
    • /
    • 2014
  • Accurate wind data is essential for predicting airborne spread of virus. OpenFOAM was used for computational fluid dynamics (CFD) simulation procedure which is under GNU GPL (General Public License). Using complex terrain, DEM (Digital Elevation Map) that was prepared from GIS information covering a research site is converted to a three dimensional surface mesh that is composed by quad and full hexahedral space meshes. Around this surface mesh, an extended computational domain volume was designed. Atmospheric flow boundary conditions were used at inlet and roughness height and was considered at terrain by using rough wall function. Two different wind conditions that was relatively stable during certain periods were compared in 3 different locations for validating the accuracy of the CFD computed solution. The result shows about 10 % of difference between the calculated result and measured data. This procedure can simulate a prediction of time-series data for airborne virus spread that can be used to make a web-based forecasting system of airborne virus spread.

알루미늄 합금 소실모형주조 시의 주형충전재에 따른 특성변화 (Investigation on Characteristics of Various Mold Packing Materials in Lost Foam Casting of Aluminum Alloy)

  • 김기영;이경환;임경화
    • 한국주조공학회지
    • /
    • 제22권3호
    • /
    • pp.137-143
    • /
    • 2002
  • Silica sand, zircon sand, and steel shots were used as mold packing materials in lost foam casting of the aluminum alloy bar. Vibration acceleration in three directions and temperatures in the casting and mold were measured, and packing and cooling characteristics of these materials were investigated. Packing densities increased with increase in vibration magnitude and time, and were $1.41{\sim}1.49g/cm^2$ for silica sand, $2.54{\sim}2.86g/cm^2$ for zircon sand, and $3.92{\sim}4.52g/cm^2$ for steel shots. Sound castings were obtained only without evacuation of the flask during pouring. Solidification time became faster in order of silica sand, zircon sand and steel shot packing because steel shot has the highest cooling capacity of them. Solidification time of steel shot packing was shortened to about 1/2 of silica sand packing. Cooling capacity of sand mold was generally evaluated by heat diffusivity of the mold, however could be simply evaluated with specific heat per unit volume of the packing material in lost foam casting.

단백질의 기포분리에 영향을 미치는 요소들에 관한 연구 (Factors Affecting Foam Separation of Proteins)

  • 이부용;이철호
    • 한국식품과학회지
    • /
    • 제19권3호
    • /
    • pp.220-224
    • /
    • 1987
  • 기포분리 조작에 영향을 미치는 제요소를 조사하기 위하여 bovine serum albumin과 ovalbumin의 표면과잉을 형성하는 농도범위를 결정하고, BSA용액의 기포분리에서 pH, 온도, 가스유입속도, 염농도 등이 미치는 영향에 대하여 관찰하였다. BSA의 임계마이셀농도인 0.03%에서 용액의 pH가 등전점 4.9부근일때 농축율은 최소치를 나타내나 기포분리액의 부피가 최대가 되어 회수율은 최대치를 가지게 된다. 등전점에서 벗어날수록 기포분리액의 양은 감소하나 농축율은 증가하였다. 기포분리온도가 $20^{\circ}C$ 이상으로 상승하면 농축율은 증가하나 분리액의 양은 급격히 감소하여 회수율이 감소하였다. 가스 유입속도가 커질수록 농축율은 감소하고 분리액의 양은 증가하엿다. $(NH_4)_2SO_4$ 첨가에 따라 농축율은 감소하나 분리액의 양은 이온강도 7에서 최대치를 나타내었다. 소수성이 작은 ovalbumin은 표면과잉을 형성하는 농도범위가 BSA에 비하여 200배 이상 높게 나타났다. 이러한 현상은 단백질의 소수성에 따른 기포분리 농축이 가능함을 시사하고 있다.

  • PDF

비담지 촉매를 이용한 NaBH4 가수분해반응에서 부산물의 특성 (Characteristics of Byproduct After NaBH4 Hydrolysis Reaction Using Unsupported Catalyst)

  • 이혜리;박대한;주원;나일채;박권필
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.13-18
    • /
    • 2017
  • 무인항공기용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 무인항공기용으로 이용하기 위해서는 $NaBH_4$ 가수분해 반응 후 부산물의 무게와 부피가 작아야 한다. 그래서 본 연구에서는 비담지 촉매를 사용한 $NaBH_4$ 가수분해 반응 후 부산물의 무게와 부피에 대해 연구하였다. 촉매 형태, $NaBH_4$ 농도, NaOH 농도, 촉매팩 두께 등이 부산물의 무게와 부피에 미치는 영향에 대해 연구하였다. 본 실험 조건에서 발생한 부산물은 대부분 $NaB(OH)_4$였고, 거품이 발생하여 부피가 증가하였다. 안정화제인 NaOH 농도는 부산물의 무게와 부피에 별 영향을 주지 않았다. $NaBH_4$ 농도가 증가하면 부산물 무게가 감소하였으나, $NaBH_4$ 농도 23 wt%에서 최고 부피를 나타냈다. 소포제를 이용해 부산물의 부피를 감소시킬 수 있었다.

감광유리를 이용한 MEMS 촉매 연소기의 제작 및 성능 평가 (Fabrication and Performance Test of MEMS Catalytic Combustors Using Photosensitive Glass Wafer)

  • 진정근;권세진
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.237-242
    • /
    • 2009
  • MEMS catalytic combustors were fabricated to use in micro-power sources as a heat source. The combustor was fabricated by photolithography and anisotropic wet etching of photosensitive glass wafers. Two different catalyst loading methods were used to complete the fabrication of the combustors. For thin film type, the $Al_2O_3$ was washcoated on the surface of the combustion chamber as a catalyst support, and for packed-bed type, ceramic foam was inserted after Pt was coated. The volume of the combustors was 1.8 $cm^3$ and 16W of heat was generated using the fabricated combustors with hydrogen. The energy density of combustor was about 8.9 W/$cm^3$.

발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석 (Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form)

  • 손영석;신지영;조영일
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

Micro FEM 해석에 의한 기포제 혼입 시멘트 페이스트의 역학적 성능 평가에 관한 연구 (A study on Mechanical Performance Evaluation of Cement Paste Using Foaming Agent by Micro FEM Analysis)

  • 김보석;우영제;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.55-56
    • /
    • 2015
  • This study is corroborated as a fundamental resource to develop structural lightweight paste containing silica fume as a part of cement. Paste using foaming agent is generated much foam and decreased density of paste. This study is measured at 0.8% of foaming agent dosage but over 0.8% of foaming agent dosage raise density of paste because of interconnection with foam. Also, FEM analysis using SEM image is confirmed correspondence of between Elastic modulus of experiment and FEM analysis.

  • PDF