• Title/Summary/Keyword: Foam Concrete Aggregate

Search Result 30, Processing Time 0.022 seconds

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

An Experimental Study on the Development of Structural Lightweight Concrete using Foam Agent (기포제를 사용한 구조용 경량 콘크리트의 개발에 관한 실험적 연구)

  • Choi, Min-Cheol;Lee, Han-Seung;Tae, Sung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.241-244
    • /
    • 2005
  • The existing structural lightweight concrete is almost manufactured by using lightweight aggregate. But most of a lightweight aggregate depends on income, it is wholly lacking domestic utilizer. So in this study we investigate the developmental possibility of structural lightweight concrete using only the aggregate of the general concrete and foam agent. As the result of experiments this paper confirmed the possibility of development of structural lightweight concrete which shows compressive strength 210kgf/$cm^{2}$ and specific gravity 1.8 t/$m^{3}$ using only foam agent

  • PDF

The effect of Foam Volume Ratio on the Shear Friction Behavior of Bottom Ash Based Lightweight Aggregate Concrete (바텀애시 골재 기반 경량 콘크리트의 전단마찰거동에 대한 기포 혼입률의 영향)

  • Kim, Jong-Won;Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.183-184
    • /
    • 2020
  • This study evaluated the effect of foam volume ratio on shear friction behavior of bottom ash based lightweight aggregate concrete (LWA_BA). The LWA_BA with different foam volume ratio ranged between 8 and 25 MPa for compressive strength(fck), 17.3~62.5 kN for shear capacity at first shear crack(Vcr), 31.1~73.8 kN for shear friction capacity(Vn), and 0.01~0.03 mm for slip at maximum peak load(S0). fck decreased with increase in the foam volume ratio, showing that this trend was also observed in Vcr, Vn, and S0.

  • PDF

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

An Experimental Study on Compressive Strength of Lightweight Concrete made of Polystyrene Foam Balls (Polystyrene Beads를 이용한 경량콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Recently, the study on mix design of lightweight concrete using the polystyrene foam balls is put into practice from the viewpoint to grade up the quality of concrete and recyclable usage of industrial by products. Polystyrene aggregate concrete, PAC, can be used as structural concrete in low strength application. For instance, PAC could be used in the middle part of sandwich panel where stresses are generally low and in the case of grid-type reinforcement where it does not need high bond strength but little compressive strength to resist the pressure of transverse reinforcement. From this point of view, the authors discussed the influence of fluidity and compressive strength of concrete by the difference of the volume percentage of polystyrene foam balls and water cement ratio.

  • PDF

Evaluation of Compressive Strength of Lightweight Aggregate Concrete using Bottom Ash Aggregates and Air Foam (기포가 혼입된 바텀애시 골재 경량 콘크리트의 압축강도 평가)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.112-113
    • /
    • 2018
  • The present feasible tests are to develop the lightweight concrete using bottom ash aggregates and performed air foam for applying to sustainable high-insulation panel. The main variables investigated are water-to-binder, foam volume ratio, and curing conditions. Test results showed that the lightweight concrete possessed the compressive strength of 5~9 MPa at the air dry density of 951~1,139 kg/m3.

  • PDF

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

Mix Design and Characteristics of Compressive Strengths for Foam Concrete Associated with the Application of Bottom Ash (Bottom Ash를 사용한 기포콘크리트의 배합 설계 및 압축강도 특성)

  • Kim, Sang-Chel;Ahn, Sang-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.283-290
    • /
    • 2009
  • Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF