• 제목/요약/키워드: Flywheel system

검색결과 221건 처리시간 0.031초

Electric Power Conversion System for Flywheel Energy Storage System using High Tc Superconducting Bearings (고온초전도체 베어링을 사용하는 플라이휠 에너지 저장 시스템을 위한 전력변환 시스템)

  • Jeougn, Hwan-Myoung;Choi, Jae-Ho;Lee, Ho-Jin;Hong, Gye-Won
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.305-309
    • /
    • 1999
  • This paper presents an high efficiency energy conversion system for very high-speed flywheel energy storage system using high Tc superconducting bearings. Main configuration of power convertor is designed to replace of the conventional battery with EMB(Electro Mechanical Battery). PMSM(Permanent Magnet Synchronous Motor) using Halbach array is used as the energy conversion system of motor and generator. Some PWM methods for the high frequency inverter is described and the power factor effects to the torque characteristics and efficiency of the motor and generator is analyzed. As the results, it is verified that the inverter output current is well regulated to be in-phase or inverse-phase sinusoidal waveform to have the wide operational range from 2,500rpm to 42,000rpm. Proposed circuit is designed to obtain the very high speed, high efficiency and stable rotational characteristics, and to be applied to1.2r[kW]/65[Wh] system.

  • PDF

Design, Manufacture and Performance Characteristics under Each Mode of High-Speed Motor/Generator for Electro-Mechanical Battery System (전기기계식 배터리 시스템용 초고속 전동발전기의 설계, 제작 및 모드별 특성)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu;Ham, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제48권8호
    • /
    • pp.400-407
    • /
    • 1999
  • This paper treated the design, manufacture and the performance characteristics under each mode of high speed motor/generator for an electro-mechanical battery(EMB). This machine is employed as an integral part of a flywheel energy storage system(FESS), i.e., a modular flywheel system to be used as a device for storing electrical or mechanical energy. In this machine, the magnetic field system is constructed by using special magnet array, dipole Halbach array with 16 permanent magnet segments and the armature is composed of a plastic bobbin and multi-phase windings with Litz wire. The magnet array produces a highly uniform dipole field without back iron. The motor/generator is 3-phase machine in which the dipole Halbach array surrounding the winding is rotating. Since there are no iron laminations, this field system offers some unique advantages for the simplicity of the design and the theoretical prediction of characteristics of a high speed electric machine. This paper describes the results obtained when EMB system was tested in the laboratory.

  • PDF

Superconductor Flywheel Energy Storage System

  • Sung, T.H.;Han, Y.H.;Han, S.C.;Choi, S.K.;Jeong, N.H.;Yun, H.J.;Park, B.S.;Kim, K.J.;Oh, J.M.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2003년도 High Temperature Superconductivity Vol.XIII
    • /
    • pp.18-18
    • /
    • 2003
  • PDF

Design of a Fuzzy Compensator for Balancing Control of a One-wheel Robot

  • Lee, Sangdeok;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.188-196
    • /
    • 2016
  • For the balancing control of a one-wheel mobile robot, CMG (Control Moment Gyro) can be used as a gyroscopic actuator. Balancing control has to be done in the roll angle direction by an induced gyroscopic motion. Since the dedicated CMG cannot produce the rolling motion of the body directly, the yawing motion with the help of the frictional reaction can be used. The dynamic uncertainties including the chattering of the control input, disturbances, and vibration during the flipping control of the high rotating flywheel, however, cause ill effect on the balancing performance and even lead to the instability of the system. Fuzzy compensation is introduced as an auxiliary control method to prevent the robot from the failure due to leaning aside of the flywheel. Simulation studies are conducted to see the feasibility of the proposed control method. In addition, experimental studies are conducted for the verification of the proposed control.

Operating characteristics analysis of Dynamic UPS using Flywheel Energy Storage Element (플라이휠 저장 에너지를 이용한 다이나믹 UPS 동작 특성 분석)

  • Lee, K.S.;Kim, J.W.;Byeon, W.Y.;Nho, E.C.;Kim, I.D.;Chun, T.W.;Kim, H.G.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.518-522
    • /
    • 2004
  • This paper describes a dynamic UPS system with flywheel energy storage element. There are three operating modes of charging, voltage compensation, and UPS. The operating principle of each mode is analyzed and simulated. The simulation results show the validity of the operation of the proposed scheme.

  • PDF