• 제목/요약/키워드: Flywheel energy storage system

검색결과 153건 처리시간 0.033초

초전도 저널베어링 Substator의 특성평가 (Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;이정필;박병철;정년호;성태현;한영희
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

플라이휠을 이용한 부하에의 순시전압강하 보상 방안 연구 (A Study of a Voltage Sag Compensation Scheme on Loads by Using Flywheel Energy Storage system)

  • 이한상;장길수;한상철;성태현;한영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.321-322
    • /
    • 2006
  • Faults on power systems are inevitable phenomena. These faults can be classified by two categories, temporary and permanent faults. Without distinction of fault types, the faults would induce several changes on power system such as transmission line trip. Especially, the most common phenomena which loads experience by the power system fault is voltage sag. Voltage sags mean that the bus voltage maintains under 0.9 p.u. of rating for several cycles, and they give serious effects to operation of load devices. To ensure proper operation of the load, the flywheel systems, one of the energy storage system, are suggested in this paper. This paper demonstrates the efficiency of flywheel energy storage system against voltage sag by PSCAD/EMTDC simulation.

  • PDF

고온초전도 베어링을 이용한 수평축 플라이휠에너지 저장장치 시스템 (Superconductor Flywheel Energy Storage system with A Horizontal Axle)

  • 성태현;이준성;한영희;한상철;최상규;김영철;김상준
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.50-55
    • /
    • 2001
  • A new type of flywheel energy storage system that has a horizontal axle with High $T_c$, superconductor bearings using Y123 single-domained crystals was developed.The dynamic Properties, stiffness and damping of the high $T_c$, superconductor radial bearings were experimentally estimated using a imbalance excitation method. The imbalance excitation method applied to this rotor- bearing system identified the identified stiffness and damping of the high temperature superconductor beatings to be 2.8 $3.3 {\times} 10^5 N/m and 775 204$ Nsec/m respectively.

  • PDF

Are Flywheels Right for Rail?

  • Read, M.G.;Smith, R.A.;Pullen, K.R.
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.139-146
    • /
    • 2009
  • Vehicle braking in non-electrified rail systems wastes energy. Advanced flywheel technology presents a way to capture and reuse this braking energy to improve vehicle efficiency and so reduce the operating costs and environmental impact of diesel trains. This paper highlights the suitability of flywheels for rail vehicle applications, and proposes a novel mechanical transmission system to apply regenerative braking using a flywheel energy storage device. A computational model is used to illustrate the operation and potential benefits of the energy storage system.

  • PDF

풍력-디젤-플라이휘일 하이브리드 발전시스템 모델링에 관한 연구 (Modeling of Hybrid Generation System with Wind Turbine, Diesel Generator and Flywheel Energy Storage System)

  • 김재언
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2979-2984
    • /
    • 2013
  • 본 논문은 도서지역에서 운용되고 있는 풍력-디젤 하이브리드 발전시스템의 풍속변화 등으로 인한 주파수변동 문제를 해결할 수 있는 플라이휘일 저장장치의 모델링 및 제어기 설계 방법을 제안하였다. 플라이휘일 저장장치는 효율측면에서 유리한 영구자석 동기기형 플라이휘일로 선정하여 모델링하였고, 주파수보상 제어기는 AC/DC/AC 양방향컨버터로 구성하되 동기기측 컨버터는 연계계통의 주파수변동에 대하여 충방전운전을 하도록 하고, 계통측 컨버터는 직류버스전압 일정제어를 통하여 출력을 하도록 설계하였다. 제안된 모델링 및 제어기 설계방법을 풍력-디젤 하이브리드 독립운전계통에 적용한 결과 풍속변화에 따른 주파수변동을 적정범위내로 유지할 수 있었다.

전동/발전기 코어에 의한 초전도 플라이휠 에너지 저장장치의 회전손실 특성 평가 (Rotational loss assessment of flywheel energy storage system by Motor/Generator core)

  • 이정필;한영희;정세용;한상철;정년호;성태현
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1775-1781
    • /
    • 2007
  • In this paper, the rotational loss of the superconductor flywheel energy storage system (SFES) by motor/generator stator core was assessed. To do this, the vertical axial type SFES with journal type superconductor bearing was manufactured. To quantitatively assess the rotational loss by the stator core, the rotational losses by superconductor bearing and the degree of a vacuum were measured. In case of variation of the inner radius and outer radius of the stator core, the rotational losses were measured. From the experimental results, It is confirmed that the rotational loss can be reduced by means of the optimal stator core design.

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.

플라이휠 에너지 저장 시스템용 양측식 영구자석 동기 전동/발전기의 착자 형태에 따른 특성 비교 (Characteristic comparison of double-side PMSM/G according to magnetization pattern for flywheel energy storage system)

  • 장석명;최지환;유대준;성소영;한상철;이정필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1021-1022
    • /
    • 2011
  • This paper presents the double side PM synchronous motor/generator for core loss reduction in flywheel energy storage system. The use of double PM rotor causes the elimination of core loss in no-load state of machine. Because flywheel rotational speed is reduced by core loss, double PM rotor is very effective in flywheel system. This paper suggests two types of double side PM rotor, Halbach magnetized array and parallel magnetized array. And characteristic comparison according to thickness of rotor back core is performed.

  • PDF