• 제목/요약/키워드: Flywheel energy storage system

검색결과 153건 처리시간 0.026초

Shore power to ships and offshore plants with flywheel energy storage system

  • Jeong, Hyun-Woo;Ha, Yun-Su;Kim, Yoon-Sik;Kim, Chul-Ho;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.771-777
    • /
    • 2013
  • This paper describes a study of major shipyard's electrical network and simulation of applying flywheel energy storage system on the electrical network at shipyard for shore-power to ships and offshore plants in order to save fuel consumption on engines, mitigate voltage sags, and prevent blackout due to pulsed load and fault, resulting in reduction of air emission into atmosphere. The proposed energy recycling method with FESS (Flywheel Energy Storage System) can be applied for electrical power system design of heavy cranes at shipyards.

초전도자기베어링을 이용한 플라이휠 에너지 저장장치의 진동특성에 관한 연구 (A Study on Vibration Characteristics of Flywheel Energy Storage System Using Superconducting Magnetic Bearings)

  • 김종수;이수훈
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.170-177
    • /
    • 1998
  • The purpose of superconducting magnetic bearing flywheel energy storage system(SMB-FESS) is to store unused nighttime electricity as kinetic energy and convert it to electricity during daytime. The SMB-FESS is proposed as an efficient energy storage system because there is no mechanical problems, such as friction and wear The flywheel over SMB is rotated at a high speed, 50,000rpm. The major source of energy loss in the SMB-FESS is vibration of flywheel. Therefore, the vibration characteristics of SMB-FESS should be identified. In this study, the axial/radial stiffness and damping coefficient of SMB are measured by a vibration test. Natural frequencies and natural modes of flywheel and magnet are analyzed by a finite element method. The modal analysis of system is performed using the modal parameters of each component and the measured stiffness/damping coefficient. So, natural at frequencies and mode shapes of the joined system can be obtained. According to critical speed analysis, the system has two rigid conical modes in the low speed range. Nevertheless, the system has not been affected by the critical speed in the main operating range.

  • PDF

초전도 부상 플라이휠 에너지 저장시스템의 구동을 위한 전동/발전기 (A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor)

  • 고창섭;연제욱;최재호;정환명;홍계원;이호진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권6호
    • /
    • pp.411-420
    • /
    • 2000
  • The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy system) is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy. In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal current for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment.

  • PDF

플라이휠 시스템의 에너지 저장/발생시 동역학적 안전성연구 (A Study on the Stability of the Flywheel System During the Storage and Generation of Energy)

  • 장웅재;이수훈
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.151-156
    • /
    • 2000
  • A vibration in a high-speed machine may lead to machinery malfunction and even catastrophic failure. So solving the vibration problem is a fundamental requirement for the stability of the high-speed machine. The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical by generator when necessary. The high-speed rotating flywheel has large amplitude at a critical speed. And it has an unstable behavior by the electric torque at the first stage of the energy generation. In this paper, the stability analysis is performed with an analytical model and equations of motion-which is considered the effect of the electric torque-to identify the stable driving condition and the dynamic behavior.

  • PDF

초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계 (Design of UPS system using SMB Flywheel Energy Storage System)

  • 정환명;최재호
    • 전력전자학회논문지
    • /
    • 제5권6호
    • /
    • pp.610-619
    • /
    • 2000
  • 본 논문에서는 현재 전력저장시스템으로써 가장 많이 사용하고 있는 배터리를 대체할 목적의 5MB (Superconductive Magnetic Bearing)를 이용한 off-line UPS에 관해 연구하였다 영구자석의 덩어리형 고온 초전도 체위에서의 부상득성을 이용하여 베어링 문제의 해결방안에 접근함으로써 고효율의 FES찰 구성하여 단상 off-line UPS에 적용하였으며 제어회로에는 80C 1 96KC 마이크로프로세서를 사용하였고 빠픈 응답윤 요구하는 부분 은 아날로그회로를 사용하여 구성하였다. 에너지 저장모드에서 컨버터 입력천류는 전원전압과 동상의 정현파로 제어하였으며 에너지 회생모드에서는 출력잔압윤 정현파로 제어하기위해 필터커패시터전류릎 직접 제어하였다. 시작 품제작을 통해 시스템의 안장된 동작특성을 확인함으로써 제안된 FES가 Off-line UPS 에서의 에너지 저장매체로써 우수함을 입증하였다.

  • PDF

플라이휠 에너지 저장장치의 진동 제어 성능 평가 (Vibration Control of Flywheel Energy Storage System)

  • 이정필;한상철;박병철;한영희;박병준;정세용
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1750-1756
    • /
    • 2009
  • In this paper, 5 kWh class Superconductor Flywheel Energy Storage System (SFES) was constructed including motor/generator, superconductor magnetic bearing(SMB), composite rotor and electromagnetic damper(EMD) system. High speed rotation test was performed after levitating flywheel rotor only using EMD without SMB. the PD controller of EMD was designed. the control system is constructed using xPC which is real time digital control system. the results of high speed rotation test showed that proposed EMD system have sufficient damping in cylindrical mode and conical mode, and vibration of wheel was suppressed below 10 ${\mu}m$.

에너지 저장시스템용 복합재 플라이휠 로터의 설계 (Design of a Composite Flywheel Rotor for Energy Storage System)

  • 정희문;최상규;하성규
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

A Novel Energy Storage System based on Flywheel for Improving Power System Stability

  • Wu, Jinbo;Wen, Jinyu;Sun, Haishun;Cheng, Shijie
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.447-458
    • /
    • 2011
  • In this paper, a novel flywheel energy storage device, called the flexible power conditioner, which integrates both the characteristics of the flywheel energy storage and the doubly-fed induction machine, is proposed to improve power system stability. A prototype is developed and its principle, composition, and design are described in detail. The control system is investigated and the operating characteristics are analyzed. The test results based on the prototype are presented and evaluated. The test results illustrate that the prototype meets the design requirement on power regulation and starting, and provides a cost-effective and effective means to improve power system stability.