• 제목/요약/키워드: Flying-Wing

검색결과 62건 처리시간 0.022초

채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침) (Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions))

  • 한철희
    • 항공우주시스템공학회지
    • /
    • 제10권3호
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

글라이딩하는 날치의 날개형상 및 성능에 관한 연구 (Investigation of the Wing Design and Performance of a Gliding Flying Fish)

  • 박형민;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF

Steady Aerodynamic Characteristics of a Wing Flying Over a Nonplanar Ground Surface Part II : Channel

  • Han Cheol-Heui;Kim Hak-Ki;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1051-1058
    • /
    • 2006
  • The steady aerodynamic characteristics of a wing flying over a channel are investigated using a boundary-element method. The present method is validated by comparing the computed results with the measured data. Compared with a flat ground surface, the channel fence augmented the lift increase and induced drag reduction. When the fence is lower than the wing height, the gap between the wingtip and the fence does not affect the aerodynamic characteristics of the wing much. When the fence is higher than the wing height, the close gap increased the lift. The induced drag is reduced when the wing is placed near the ground or at the same height as the fence. It is believed that present results can be used in the conceptual design of the high-speed ground transporters flying over the channel.

플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석 (Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon)

  • 고아림;장경식;박창환;신동진
    • 항공우주시스템공학회지
    • /
    • 제13권5호
    • /
    • pp.32-38
    • /
    • 2019
  • 높은 후퇴각을 갖는 둥근 앞전 날개 형상은 앞전 와류에 의해 복잡한 유동 현상이 나타난다. 불안정한 방향 안정성을 갖는 무미익 플라잉윙의 제어를 위해서 플래퍼론이 사용된다. 본 연구에서는 플래퍼론이 전개된 비세장형, 둥근 앞전의 플라잉윙 형상의 전산해석을 수행하였으며 옆미끄럼각 및 플래퍼론에 대한 영향을 분석하였다. 공력계수 분석을 통해 양력과 항력계수에 대한 옆미끄럼각의 영향은 적으며 측력 및 모멘트 계수는 옆미끄럼각의 영향을 크게 받음을 알 수 있었다. 정적 안정성 분석을 통해 플래퍼론이 전개된 플라잉윙의 가로안정성과 방향안정성이 좋아졌음을 확인하였다. 또한 압력계수분포, 표면 마찰선의 관찰을 통해 앞전 와류 구조 및 거동을 분석하였다.

전익기 형상의 앞전후퇴각 변화에 따른 공력해석 (AERODYNAMIC ANALYSIS ON LEADING-EDGE SWEEPBACK ANGLES OF FLYING-WING CONFIGURATIONS)

  • 이재문;장조원
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.48-55
    • /
    • 2006
  • A computational study was carried out in order to investigate aerodynamic characteristics on leading edge sweepback angles of Flying-Wing configurations. The viscous-compressible Navire-Stokes equation and Spalart-Allmaras turbulence model of the commercial CFD code were adopted for this computation analysis. This investigation examined aerodynamic characteristics of three different types of leading edge sweepback angles: $30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$. The freestream Mach number was M=0.80 and the angle of attack ranged from ${\alpha}=0^{\circ}C\;to\;{\alpha}=20^{\circ}C$. The results show that the increases in sweepback angle of the Flying-Wing configuration creates more efficient aerodynamic performance.

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석 (Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface)

  • 정용인;조정현;조진수
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.369-374
    • /
    • 2007
  • 비평면 지면 위를 비행하는 플래퍼론이 있는 날개의 비정상 공력특성을 경계요소법을 사용하여 연구하였다. 시간 전진법을 사용하여 채널과 지면 위를 비행하는 날개 및 플래퍼론의 움직임에 따른 후류의 형상을 모사하였다. 지면 위 또는 채널 내를 비행하는 날개의 공력계수는 플래퍼론의 주기운동에 따라 일정한 루프로 나타난다. 플래퍼론 변화에 따른 롤링모멘트는 지면 위를 비행하는 날개와 채널 내를 비행하는 날개가 동일한 결과를 나타내었다. 피칭모멘트는 지면에서 보다 채널 내를 비행할 때 플래퍼론의 움직임에 따라 더 큰 변화폭을 나타내었다. 본 연구를 통해 비평면 지면 위를 비행하는 운송체의 안정성 해석에 필요한 다양한 공력계수 확보가 가능하다.

꼬리날개 없는 곤충모방 날갯짓 비행로봇의 제어비행 (Controlled Flight of Tailless Insect-Like Flapping-Wing Flying-Robot)

  • 판 호앙 부;강태삼;박훈철
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.256-261
    • /
    • 2016
  • An insect-like flapping-wing flying-robot should be able to produce flight forces and control moments at the same time only by flapping wings, because there is no control surface at tail just like an insect. In this paper, design principles for the flapping mechanism and control moment generator are briefly explained, characteristics measured force and moment generations of the robot are presented, and finally controlled flight of the flying robot is demonstrated. The present insect-like robot comprises a lightweight flapping mechanism that can produce a flapping angle larger than $180^{\circ}$ and a control moment generator that produces pitch, roll, and yaw moments by adjusting location of the trailing edges at the wing roots. The measured force and moment data show that the control input angles less than $9^{\circ}$ would not significantly reduce the vertical force generation. It is also observed that the pitch, roll, and yaw control moments are produced only by the corresponding control input. The simple PID control theory is used for the controlled flight of the flying robot, controlling pitch, roll, and yaw motions. The flying robot successfully demonstrated controlled flight for about 40 seconds.

생체모방 공중로봇의 날개 구조 모델링 (The wing structure modeling of the bioinspired aerial robot)

  • 최연호;조내수;정정은;권우현;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.269-274
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

생체모방 공중로봇의 날개 구조 모델링 (The wing structure modeling of the bioinspired aerial robot)

  • 최연호;조내수;정정은;권우현;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.404-405
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism and which it applies to the robot is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

  • PDF