• 제목/요약/키워드: Flying robot

검색결과 30건 처리시간 0.032초

전방향 소형비행로봇의 개발 (Development of A Omni-directional Flying Robot)

  • 이호길;원대희;박윤수;양광웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2003
  • In this paper, dynamic behaviors of a small-sized flying robot with 4 rotors propelled by DC motor are discussed, and a control scheme based on the dynamic model to make stable flying motions, i.e., hovering, take-off, cruising behavior, etc. is proposed. The experimental results via some flying tests show good performances for practical use. The flying robot with 6DOF is controlled only 4 DOF, and the rest of two DOF are remained under the dynamic constraints. How to give the stability of all positions and orientations and to make the omni-directional motions in spite of such restrictions is analyzed. The proposed control scheme composes of two stages. First, PD control inputs for the trust-force and orientation are calculated, next the control inputs are distributed to each rotor by using a sort of Jacobian matrix. To design and control of a low cost - small sized flying robot, vibrated gyro sensor, cheap accelerometer, IR, and ultra sonic sensors are selected.

  • PDF

감시용 동축로터 비행로봇의 개발 (Development of a Coaxial Rotor Flying Robot for Observation)

  • 강민성;신진옥;박상덕;황세희;조국;김덕후;지상기
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

꼬리날개 없는 곤충모방 날갯짓 비행로봇의 제어비행 (Controlled Flight of Tailless Insect-Like Flapping-Wing Flying-Robot)

  • 판 호앙 부;강태삼;박훈철
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.256-261
    • /
    • 2016
  • An insect-like flapping-wing flying-robot should be able to produce flight forces and control moments at the same time only by flapping wings, because there is no control surface at tail just like an insect. In this paper, design principles for the flapping mechanism and control moment generator are briefly explained, characteristics measured force and moment generations of the robot are presented, and finally controlled flight of the flying robot is demonstrated. The present insect-like robot comprises a lightweight flapping mechanism that can produce a flapping angle larger than $180^{\circ}$ and a control moment generator that produces pitch, roll, and yaw moments by adjusting location of the trailing edges at the wing roots. The measured force and moment data show that the control input angles less than $9^{\circ}$ would not significantly reduce the vertical force generation. It is also observed that the pitch, roll, and yaw control moments are produced only by the corresponding control input. The simple PID control theory is used for the controlled flight of the flying robot, controlling pitch, roll, and yaw motions. The flying robot successfully demonstrated controlled flight for about 40 seconds.

항공 및 지상 동시 정찰이 가능한 융합형 정찰로봇 설계 (Design of Fusion Platform Robot for Ground and Aerial Reconnaissance)

  • 장동휘;고현준;김종형
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.718-723
    • /
    • 2015
  • This paper describes the conceptual platform design of a dual-capable robot for both driving on the ground and flying in the air. The dual-capable robot can move over all types of terrain for both ground and aerial reconnaissance. The main design problem of the robot is how to make a wheel for both driving and flying. The proposed key design concept is a hubless driving wheel that contains a propeller inside for flying in the air. The primary design parameters and initial specifications were confirmed through an examination of the conceptual design, and functional tests were then conducted using a real prototype robot for driving and flying modes. The test results show the feasibility of the proposed design concept.

생체모방 공중로봇의 날개 구조 모델링 (The wing structure modeling of the bioinspired aerial robot)

  • 최연호;조내수;정정은;권우현;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.404-405
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism and which it applies to the robot is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

  • PDF

쿼드로터형 비행로봇의 자세 안정화 성능 개선 (Attitude Stabilization Performance Improvement of the Quadrotor Flying Robot)

  • 황종현;황성필;홍성경;유민구
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.608-611
    • /
    • 2012
  • This paper focuses on attitude stabilization performance improvement of the quadrotor flying robot. First, the dynamic model of quadrotor flying robot was estimated through PEM (Prediction Error Method) using experimental input/output data. And attitude stabilization performance was improved by increasing the generation frequency of PWM signal from 50 Hz to 500 Hz. Also, the controller is implemented using a standard PID (Proportional-Integral-Derivative) controller augmented with feedback on angular acceleration, allowed the gains to be significantly increased, yielding higher bandwidth. Improved attitude stabilization performance is verified by experiment.

생체모방 공중로봇의 날개 구조 모델링 (The wing structure modeling of the bioinspired aerial robot)

  • 최연호;조내수;정정은;권우현;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.269-274
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF