• Title/Summary/Keyword: Flying jet plasma

Search Result 1, Processing Time 0.015 seconds

In situ Transesterification/Reactive Extraction of Castor Bean Seeds Assisted by Flying Jet Plasma for Biodiesel Production

  • Elsheikh, Yasir A.;Abdul-Majeed, Wameath S.;Nasir, Qazi;Al-Rahbi, Balaqis;Al-Subhi, Noor;Mahmoud, Mohamed A.;AAl-Thani, Ghanim S.
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.538-544
    • /
    • 2022
  • One of the most exciting areas for the development of alternative fuels is the production of biodiesel. To reduce the cost of biodiesel production, in situ trans-esterification has been introduced to simplify the production process by enabling extraction and trans-esterification to occur at a single stage in the presence of a catalyst. In this study, we investigated the feasibility of using non-corrosive and environmentally receptive flying jet plasma as an alternative catalytic route for in situ tran-sesterification of castor bean seeds (CBS). Upon optimizing the reaction conditions, it is elucidated that applying a low ratio of methanol to seeds (≤6:1) has resulted in hindering the in situ trans-esterification and leading to insignificant conversion. The yield of esters has increased from 80.5% to 91.7% as the molar ratio rose from 9:1 to 12:1. Excess alcohol beyond the ratio of 15:1 was shown to have a negative impact on the yield of the produced esters, attributed to an increase in the biodiesel portion prone to dissolving in the co-product (glycerol). An increase in the reaction bulk temperature from 40 to 55 ℃ led to a higher ester content by 50%. Further increases in the bulk temperature beyond 55 ℃ did not affect yields. Regarding the reaction period, the results have shown that 3 h of reaction is adequate for a higher biodiesel yield. The quality of the biodiesel obtained has demonstrated that all physicochemical properties meet the ASTM D6751 specifications.