• Title/Summary/Keyword: Fly-By-Wire System

Search Result 38, Processing Time 0.024 seconds

In Flight Simulation for Flight Control Law Evaluation of Fly-by-Wire Aircraft (I)

  • Ko, Joon-Soo;Lee, Ho-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2560-2565
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The control law was designed for the most unstable aircraft configuration flight regime for the target aircraft (FBWA). The ground based simulation including math-model, real-time pilot-in-the-loop and iron bird simulation were used for validation of the control law before the experimental in-flight simulation on the IFS (In.Flight-Simulator) aircraft. The flight tests results showed that Level 1 handling qualities for the most unstable flight regime were achieved.

  • PDF

FBW System and Operational Flight Program Development for Small Aircraft (소형항공기를 위한 FBW 시스템과 비행운영 프로그램 개발)

  • Lee, Seung-Hyun;Kim, Eung Tai;Seong, Kiejeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To have the competitiveness in the future worldwide small aircraft market, we should be able to develop the aircraft which is highly safe, easy to fly, and having excellent flight characteristics. FBW(Fly-By Wire) system is essential for the enhancement of flight safety and control easiness. FBW system that has been applied only to the modern fighter and transport aircraft is recently applied to smaller aircraft such as regional aircraft, business aircraft and even small aircraft. The purpose of this research includes the development of flight control computer, the definition of FBW system component, the design concept of each component for redundant management, OFP(Operational Flight Program) development, FBW system integration and HILS(Hardware In-the Loop Simulation) verification environment to test this FBW system.

Design of a Flight Envelope Protection System Using a Dynamic Trim Algorithm

  • Shin, Ho-Hyun;Lee, Sang-Hyun;Kim, You-Dan;Kim, Eung-Tae;Sung, Ki-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.241-251
    • /
    • 2011
  • Most large commercial aircrafts and high performance military aircrafts use fly-by-wire (FBW) or fly-by-light systems to improve their controllability, comfort, and safety. A flight envelope protection technique is used with flight control systems utilizing the FBW technique. Such flight envelope protection systems prevent these aircraft from exceeding the structural/aerodynamic limits and control their surface limits. This is accomplished by predicting the values of the future state variables and adaptively compensating the control action. In this study, the conventional dynamic trim algorithm of the flight envelope protection is modified to increase the method accuracy and to handle cases with multiple variables. Numerical simulation is also performed to verify the performance of the proposed method.

A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis (T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kang Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

Test development of a UAV equipped with a Fly-By-Wireless flight control system (무선네트워크 비행제어시스템을 탑재한 무인항공기의 시험개발)

  • Oh, Hyung Suk;Kim, Byung Wook;Lee, Si Hun;Nho, Won Ho;Kang, Seung Eun;Ko, Sang Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1039-1047
    • /
    • 2017
  • This paper presents a test development of a Fly-By-Wireless flight control system for a fixed-wing unmanned aerial vehicle (UAV). Fly-By-Wireless system (FBWLS) refers to a system that uses a wireless network instead of a wired network to connect sensors and actuators with a flight control computer (FCC), reducing considerable amount of wires. FBWLS enables to design a much lighter aircraft along with decreased maintenance time and cost. In this research we developed a Zigbee-based FWBLS UAV in which sensors (GPS and AHRS) are wirelessly connected via a FCC to aileron and elevator servo motors. In order to see the effect of time delay due to wireless signal on the flight stability of the UAV, several flight tests were conducted. From the tests, it was confirmed that the effect is minor by comparing the flight response of the FBWLS with the corresponding Fly-By-Wire system.

Helicopter Attitude Command Response Type Control System Design using SAS Actuators and Trim Actuators (안정성증강 작동기와 트림 작동기를 이용한 헬리콥터 자세명령반응타입 제어시스템 설계)

  • Kim, Eung Tai;Choi, Inho;Hyun, JeongWook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.34-40
    • /
    • 2013
  • Attitude command response type required for enhanced handling qualities of helicopter can be implemented by mechanical automatic flight control system with SAS actuators which have limited authorities. However, the early saturation of SAS actuator hinders the helicopter from following the attitude command for large stick command. Auto-trim controller can delay SAS actuator's saturation by utilizing trim actuators and allows the attitude command response type for larger stick command. This paper describes the control law for limited authority system of helicopter with auto-trim. Limited authority system is applied to BO-105 linear dynamic model and simulation is performed along with handling quality analysis.

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

Secure methodology of the Autocode integrity for the Helicopter Fly-By-Wire Control Law using formal verification tool (정형검증 도구를 활용한 Fly-By-Wire 헬리콥터 비행제어법칙 자동코드 무결성 확보 방안)

  • An, Seong-Jun;Cho, In-Je;Kang, Hye-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.398-405
    • /
    • 2014
  • Recently the embedded software has been widely applied to the safety-critical systems in aviation and defense industries, therefore, the higher level of reliability, availability and fault tolerance has become a key factor for its implementation into the systems. The integrity of the software can be verified using the static analysis tools. And recent developed static analysis tool can evaluate code integrity through the mathematical analysis method. In this paper we detect the autocode error and violation of coding rules using the formal verification tool, Polyspace(R). And the fundamental errors on the flight control law model have been detected and corrected using the formal verification results. As a result of verification process, FBW helicopter control law autocode can ensure code integrity.

Development of Autothrottle for Small Aircraft FBW Test (소형항공기 FBW 시스템용 오토스로틀 개발)

  • Lee, Sugchon;Kim, Eung Tai;Seong, Kie-Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.32-38
    • /
    • 2009
  • An autothrottle module for small jet aircraft Fly-By-Wire system was developed. The autothrottle was designed to be composed of DC geared motor and electro-magnetic clutch that enables smooth manual/auto switching. A controller was designed for simple position control using ON/OFF control method with a commercial motor driver. The autothrottle developed was installed in the cockpit mockup and interfaced to the flight control computer for the HILS test. The performance test proved that the throttle lever follows well the command signal from the flight control computer.

  • PDF

Study on Korean In-Flight Simulator Aircraft (한국형 공중 시뮬레이터 항공기 연구)

  • Ko, Joon-Soo;Ahn, Jong-Min;Park, Sung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1026-1030
    • /
    • 2011
  • This paper presented here contains development of variable stability system(VSS) control laws for the KIFS (Korean In-Flight Simulator) aircraft to simulate the dynamics of F-16 aircraft. Development of VSS Control law for pitch rate, roll rate, yaw rate simulation for three specified flight conditions using Model Following Technique with rate feedback autopilot for stability provision. The direct lift force controller was also added to the developed VSS control law to simulate the pitch rate and normal g-load simultaneously. The simulation results show high accuracy of F-16 aircraft's pitch, roll, yaw rate and g-load simulation.