• Title/Summary/Keyword: Fly age

Search Result 241, Processing Time 0.023 seconds

Experiment Study on the Improvement of the Early-Age Strength of Fly Ash Concrete Using CSA (CSA를 사용한 플라이애시 콘크리트의 초기강도 개선을 위한 실험연구)

  • Park, Ji-Sun;Jeon, Chan-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.687-694
    • /
    • 2013
  • This study was performed with an aim to improve the early-age strength of concrete containing fly ash, which is known to increase the long-age strength of concrete, reduce drying shrinkage, and enhance water tightness. The composition was partially substituted with calcium sulfoaluminate (CSA), from which ettringite is actively produced, in the early stages of hydration to verify its effect on improving the early-age strength and to determine the optimal mixing ratio. For this purpose, up to 30 % of the cement weight was substituted with fly ash, and the amount of CSA substitution was 8% of the fly ash weight. The mixtures were then fabricated into concrete specimens for compressive strength measurement and analysis of the correlation between the hydration products and the compressive strength.

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

The Experimental Study on Early Strength Properties of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 초기강도성상에 관한 실험적 연구)

  • 이동하;김상미;강태경;백민수;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.281-286
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment of curing temperature $35^{\circ}C$, . Flesh concrete tested slump. air contest and Hardening concrete valuated setting period of form, day of age 1, 3, 5. 7, 10, 28 compression strength in sealing curing. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Experiment result age 28day compression strength more higher plan concrete then standard environment in curing temperature $20^{\circ}C$, , most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$, replacement binder 25%, fine aggregate 15%. (2) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

  • PDF

Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature (고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석)

  • Han Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash (플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성)

  • 이회근;윤태섭;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

An Experimental Study on the Properties of High Volume Fly Ash Concrete (플라이애시를 대량 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Jang, Jong-Ho;Choi, Sung-Woo;Choi, Hee-Yong;Park, Sun-Gyu;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.549-554
    • /
    • 2000
  • Generally, it is indicated that concrete using fly ash as a part of cement content has lower early strength, and faster carbonation velocity. To improve these problems and provide useful information for high volume fly ash concrete, the properties of concrete - those include slump, bleeding, setting time, compressive strength and carbonation depth etc. - which contained large amount of fly ash as a part of fine aggregate were investigated experimentally. According to test results, it was found that the compressive strength of the concrete increased in early age as well as in long term age with the increase of the fly ash content. And the carbonation depth of concrete using fly ash as a part of fine aggregate was lower than that of plain concrete(FA 0kg/ $\textrm{m}^3$).

  • PDF

A Study on Sodium Sulfate Activited the Hydration Properties of Fly Ash-cement Paste (황산염나트륨 자극제를 사용한 플라이 애쉬 혼입 시멘트 페이스트의 초기 수화 특성에 관한 기초적 연구)

  • Wang, Zihao;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.129-130
    • /
    • 2021
  • In order to solve the problem of low early-age compressive strength of high volume fly ash concrete. This paper studies the effect of 2% sodium sulfate (Na2SO4) as a chemical activator on the paste with 40% fly ash content and a water-binder ratio of 0.30. The results indicate that the addition of Na2SO4 can effectively improve the early-age compressive strength of the fly ash-cement system, and the strength improvement rate on the first day reached nearly 70%. In addition, calorimetric analysis reveals that the incorporation of Na2SO4 promotes the early hydration of cement and fly ash, increases the cumulative hydration heat and delays the heat peak of the aluminum phase.

  • PDF

A Study on the Compressive Strength Property of Mortar with Fly Ash Using Water Eluted from Recycled Coarse Aggregates (용출수를 사용한 플라이애쉬 혼입 모르타르의 강도특성에 관한 연구)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.31-32
    • /
    • 2013
  • ThThe purpose of this study is to investigate the compressive strength properties of fly ash using water eluted from recycled coarse aggregate. When fly ash come into contact with water, they have not a autonomously chemical reaction. But fly ash is a pozzolan reaction when fly ash come into contact with water and calcium hydroxide(Ca(OH)2) in alkaline environment. For that reason, if water eluted from recycled coarse aggregate use mixture water, fly ash is expected to reaction of pozzolan reaction property in early stage. According to the experimentation result, ICP-MS analysis showed water eluted from recycled coarse aggregate has a high alkali-ash value of pH of 12 and over. And mixing ratio 30% fly ash mortar using water eluted from recycled coarse aggregate showed a similar strength of plain mortar due to the pozzolan reaction. Also, poor strength in initial age, disadvantage of mortar using fly ash, can be improved as hydration in early age is expedited due to calcium hydroxide(Ca(OH)2) and unhydrated cement component eluted from recycled aggregate mortar.

  • PDF

Hydration and time-dependent rheology changes of cement paste containing ground fly ash

  • Chen, Wei;Huang, Hao
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2013
  • The use of ground fly ash in concrete can increase the risk of slump loss due to the drastic surface change of the particles after the grinding treatment and the accelerated reaction compared to the untreated ash. This study is aimed at the early age hydration and time-dependent rheology changes of cement paste containing ground fly ash. An original fly ash is ground into different fineness and the hydration of cement paste containing the ground fly ash is monitored with the ultrasound propagation method. The zeta potentials of the solid particles are measured and the changes of rheological parameters of the cement pastes with time are analyzed with a rheometer. A particle packing model is used to probe packing of the solid particles. The results show that the early age hydration of the paste is strongly promoted by replacing Portland cement with fly ash up to 30 percent (by mass), causing increase of the yield stress of the paste. The viscosity of a paste containing ground fly ash is lower than that containing the untreated ash, which is explained by the denser packing of the solid particles.