• 제목/요약/키워드: Flux-differential current slope

검색결과 5건 처리시간 0.018초

전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘 (Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer)

  • 박철원;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

전압-전류 추이와 자속-차전류 기울기 특성을 이용한 변압기 보호계전기법의 성능 개선 (Performance Improvement of Protective Relaying for Large Transformer by Using Voltage-Current Trend and Flux-Differential Current Slope Characteristic)

  • 박철원;박재세;정연만;하경재;신명철
    • 전기학회논문지P
    • /
    • 제53권2호
    • /
    • pp.43-50
    • /
    • 2004
  • Percentage differential characteristic relaying(PDR) has been recognized as the principal basis for power transformer protection. Second harmonic restraint PDR has been widely used for magnetizing inrush in practice. Nowadays, relaying signals can contain 2nd harmonic component to a large extent even in a normal state, and 2nd harmonic ratio indicates a tendency of relative reduction because of the advancement of material. Further, as the power system voltage becomes higher and more underground cables are used, larger 2nd harmonic component in the differential current under internal fault is observed. And then, conventional 2nd harmonic restraint PDR exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for performance improvement of conventional protective relaying. This paper proposes an advanced protective relaying algorithm by using voltage-current trend and flux-differential current slope characteristic. To evaluate the performance of the proposed algorithm, we have made comparative studies of PDR, fuzzy relaying and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP, and data collection is made through simulation of various internal faults and inrush. As the results of test, the new proposed algorithm was proven to be faster and more reliable.

전력용변압기보호를 위한 개선된 수치계전기법 (Advanced Numerical Relaying for Power Transformer Protection)

  • 박철원;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.217-219
    • /
    • 2004
  • The second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic-restrained RDR needs modification. This paper describes an advanced numerical algorithm that utilizes terminal voltage, differential current harmonics, harmonic ratio, and flux-differential current slope. Based on the results of testing with WatATP99 simulation data, the proposed algorithm was proven to be faster and more reliable.

  • PDF

DSP를 이용한 전력용 변압기용 IED의 하드웨어 설계 (Hardware Design of IED using DSP for Power Transformer Protection)

  • 박철원;정연만;하경재;구춘서;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.363-365
    • /
    • 2004
  • This paper proposes a hardware implementation of intelligent electronic device for power transformer protection. And proposes an advanced main protection algorithm by voltage-current trend and flux-differential current slope characteristics. The secondary protection functions include UR, OCGR, OVR, and W etc. The main board of IED is based on the DSP chip TMS32C32 processor The IED was tested with relaying signals obtained for EMTP simulation package.

  • PDF