• Title/Summary/Keyword: Flux tracking

Search Result 95, Processing Time 0.028 seconds

The Limit of Magnetic Helicity Estimation by a Footpoint Tracking Method during a Flux Emergence

  • Choe, Gwang Son;Yi, Sibaek;Jang, Minhwan;Jun, Hongdal;Song, Inhyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2018
  • Theoretically, the magnetic helicity transport flux through the solar surface into the upper atmosphere can be estimated indefinitely precisely by magnetic field footpoint tracking if the observational resolution is infinitely fine, even with magnetic flux emergence or submergence. In reality, the temporal and spatial resolutions of observations are limited. When magnetic flux emerging or submerging, the footpoint velocity goes to infinity and the normal magnetic field vanishes at the polarity inversion line. A finite observational resolution thus generates a blackout area in helicity flux estimation near the polarity inversion line. It is questioned how much magnetic helicity is underestimated with a footpoint tracking method due to the absence of information in the blackout area. We adopt the analytical models of Gold-Hoyle and Lundquist force-free flux ropes and let them emerging from below the solar surface. The observation and the helicity integration can start at different emerging stages of the flux rope, i.e., the photospheric plane initially cuts the flux rope at different levels. We calculate the magnetic helicity of the flux rope below the photospheric level, which is eventually to emerge, except the helicity hidden in the region to be swept by the blackout area with different widths. Our calculation suggests that the error in the integrated helicity flux estimate is about half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  • PDF

A Study on the Development of Arc Sensor for Flux Cored Arc Welding Process and its Application for Seam Tracking (Flux Cored Arc용접용 아크센서의 개발 및 이를 이용한 용접선 추적에 관한 연구)

  • 김수영;이승영;나석주
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.190-198
    • /
    • 1992
  • Among the variety of welding processes available, the flux cored arc welding is one of the most frequently used process, because of its wide range of application and high productivity. The weld joint tracking is indispensable to improve the flexibility of the arc welding robot application for the flux cored arc welding (FCAW) process. In this study, an arc sensor which utilizes the electrical signal obtained from the welding arc itself was developed for weld joint tracking in FCAW. Because a model of the welding arc in flux cored arc welding was required to develop the arc sensor, a mathematical model was proposed by analysing the welding arc behaviour, and also an experimental model by using the factorial experiment and least square method. For overcoming the fluctuation in the welding current signal during tracking the weld joint, it was fitted to a curve which is inversely proportional to a trace of tip-to-workpiece distance by using the quadratic curve-fitting method.

  • PDF

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

LVRT Scheme for Doubly Fed Induction Generator Systems Based on Flux Tracking Method (자속 추종을 통한 DFIG 시스템의 LVRT 기법)

  • Park, Sun-Young;Chun, Yeong-Han;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1059-1065
    • /
    • 2013
  • Doubly Fed Induction Generator(DFIG) systems occupy the largest proportion of worldwide wind energy generation market. DFIG systems are very sensitive to grid disturbances especially to voltage dips due to the structure of the stator connected to grid. In the past, when a grid fault occurs generators are separated from grid(trip method) in order to protect the systems. Nowadays, due to the growing penetration level of wind power, many countries have made some requirements that wind turbines are required to have Low Voltage Ride Through(LVRT) capability during grid faults. In this paper, a flux tracking LVRT control strategy based on system modeling equations is proposed. The validity of the proposed strategy is verified through computer simulations.

A New Flux Tracking LVRT Control Scheme for Doubly Fed Induction Generators

  • Park, Sun-Young;Ahn, Hyung-Jin;Lee, Dong-Myung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Doubly fed induction generator (DFIG) systems widely used globally are highly sensitive to the grid disturbance due to the structure that the stator is connected to the grid. In the past, when a grid fault occurs in order to prevent a system, generators are separated from the grid regardless of the fault duration time. Recently, however, the grid connection standards(Grid Code)says that for the failures removed within a certain time, the generator remains operation without separating from the grid. This paper proposes a new flux tracking LVRT(Low-Voltage Ride Through) control based on system modeling equations. The validity of the proposed strategy has been demonstrated by computer simulations.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

A Study on the Effective Arc Sensing by the Use of the Weighted-Arc-Current in Flux-Cored Arc Welding for Fillet Joints (가중용접전류를 이용한 FCAW 필릿용접용 아크센싱 알고리즘 연구)

  • 권순창;최재성
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.83-90
    • /
    • 2000
  • It was attempted to improve seam-tracking performance by applying a new arc-sensing algorithm for FCAW(flux-cored arc welding) process in fillet joints. For this study the authors have introduced three different weight factors: $\circled1$ arc currents at the weaving end are more weighted, $\circled2$ arc currents are evenly weighted along the weaving, and $\circled3$ arc currents at the weaving center are more weighted. To evaluate the 3 factors the values of signal-to-noise(S/N) ratio has been measured. The values were obtained for various welding conditions with different gaps in horizontal and vertical fillet joints. The test results showed that the S/N ratio of the 1st case was highest which resulted in the best of seam tracking performance. In addition, the comparison between the seam tracking performance in horizontal fillet joints and that in vertical ones has been done, and the result showed that tracking performance in vertical joints was relatively better than that in horizontal joints.

  • PDF

Development of an Effective Arc Sensing Algorithm for Seam-Tracking in Flux-Cored Arc Welding Process for Horizontal Fillet Joints (FCAW 수평 필릿용접용 용접선추적을 위한 아크센싱 알고리즘 개발)

  • 권순창;최재성;장낙영
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 1997
  • This paper describes a newly developed arc-sensing algorithm of seam-tracking for FCA W (flux-cored arc welding) horizontal fillet welding. In this algorithm, arc current and the Weighted-Are-Current (WAC) are used to adjust the position of a weld torch in directions of bead throat and weaving, respectively. The WAC, which is newly devised in this study, means that arc current in the vicinity of weaving end is more emphasized than that in the center of weaving. The reason of this is because there usually exists much noise in the center of weaving due to abrupt change of arc length in case some empty gaps exist in a fillet joint Variance analysis was performed in order to check the effect of weld parameters on arc current and the WAC. As a result, the relationships between tip-to-workpiece distance and arc current, and between weaving offset and the WAC were established.To check "the validity of the algorithm, seam-tracking experiments were performed ;mder various welding condition. The result of experiments showed a satisfactory tracking performance in the presence of empty gaps in a horizontal fillet joint.et joint.

  • PDF

Finite Control Set Model Predictive Control with Pulse Width Modulation for Torque Control of EV Induction Motors (전기자동차용 유도전동기를 위한 유한제어요소 모델예측 토크제어)

  • Park, Hyo-Sung;Koh, Byung-Kwon;Lee, Young-il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2189-2196
    • /
    • 2016
  • This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.

A Method for Reducing Path Tracking Errors of an AGV with a Trailer (대차가 있는 무인 운반차의 경로 추종 오차 감소 방법)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.132-138
    • /
    • 2014
  • The use of AGVs(Automated Guided Vehicles) are increasing in many factories. The most widely used AGV system is that magnetic tapes are attached on the factory floor to make guided path and an AGV equipped with a magnetic sensor follows the path by sensing magnetic flux. In this AGV system, usually a magnetic sensor is attached on the front end of an AGV to detect the guided path and the sensor generates analog voltages proportional to the magnetic flux. The problem is that the AGV in use has rather big tracking errors because the accurate orientation of the AGV can not be detected by using only one magnetic sensor. In this paper, we propose a method to minimize the path tracking errors. In our method, one additional sensor is attached on the rear end of the AGV to estimate the orientation of the AGV and to control more accurately the AGV according to the estimated orientation of the AGV. We performed several experiments and the results successfully show the feasibility of the proposed method.