• Title/Summary/Keyword: Flux switching motor

Search Result 116, Processing Time 0.027 seconds

Study of the Method of Calculating Maximum Voltage for Flux-Weakening Operation of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 약계자 제어를 위한 최대전압 선정에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;An, Yong Ho;Yoon, Gi Gab;Lim, Ik-Hun;Jun, Hyang-Sig
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • The constraint conditions are the stator voltage and the stator current to operate the motor in the flux weakening region. The maximum current is limited by the inverter current rating and the machine thermal rating. Given DC link voltage to control the motor in the flux weakening the maximum voltage is determined by considering PWM strategy, dead time, voltage drop of the inverter switching device, and the margin of the voltage for current forcing. In this paper, the new method to determine the available maximum voltage is derived by the quantitative method and by considering the factors of the voltage drop. The proposed method to determine the maximum voltage is very useful to improve the stability of the motor system and to enlarge the speed operation region in the flux weakening operation. Therefore the utility of the maximum voltage is increased.

  • PDF

Direct Torque Control of Induction Motor for Constant Switching by Torque Slop (토오크 기울기에 의한 일정스위칭을 위한 유도전동기의 직접토오크 제어)

  • Park, Jung-Kook;Kim, Dae-Kon;Jeong, Byeong-Ho;Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.296-299
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional DTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(DTC) schemes are proposed. Those schemes are based on the torque slope and enable to reduce the torque ripple and maintain the switching frequency constantly.

  • PDF

New Fuzzy Variable Switching Sector Technique for DTC on Induction Motor Drives (유도전동기 직접토크제어를 위한 새로운 퍼지 가변스위칭 섹터기법)

  • Ryu Ji-Su;Lee Kee-Sang;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.11-14
    • /
    • 2001
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motor drives because it can be used at lower switching frequency There are a major drawbacks with the application of DTC schemes it is large current harmonics due to flux drooping in a low speed range. In order to solve the problem, the fuzzy variable switching sector scheme are adopted in this paper. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy variable switching sector technique. Experimental results show the effectiveness of this proposition.

  • PDF

A Study on the Output Voltage Control of Series-Parallel Resonant type DC/DC Converter for Transverse Flux Linear Motor (TELM에 적용한 직병렬 공진형 DC/DC 컨버터의 출력전압 제어에 관한 연구)

  • Hwang Gye Ho;Lee Young Sik;Jeon Jin Yong;Bang Deok Je;Kim Ho Jong;Shin Byoung Chol;Kang Do Hyun;Kim Jong Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, with loosely coupled transformer Relies-parallel resonant type DC/DC converter is analyzed and adopted to the power source of a TFLM(Transverse Flux Linear Motor). To get more efficient operating mode of the series-parallel resonant type DC/DC converter, theoretical analysis using normalized parameters are accepted. The analysis includes a specially made ferrite transformer with two separately wound half cores in order to evaluate analytically and experimentally the changes in magnetizing the leakage fluxes and inductances caused by the distance between the halves. The proposed converter must be operated in switching Pattern III among the three switching patterns for the Zero Voltage Switching operation. According to Pulse Frequency Modulation(PFM) control method, the output voltage of the proposed circuit can be controlled. The results of the theoretical development are compared with practical measurements from a prototype system.

  • PDF

The Study of the method of calculating Maximum voltage in Flux-Weakening Region (약계자 영역에서 최대전압 설정에 관한 연구)

  • 김장목;임익헌;류홍우
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.26-30
    • /
    • 1999
  • The constraint condition is the stator voltage and the stator current to operate the motor in the flux weakening region. The maximum current is limited by the inverter current rating and the machine thermal rating. Given DC link voltage to control the motor in the flux weakening the maximum voltage is determined by considering PWM strategy, dead time, voltage drop of the inverter switching device, and the margin of the voltage for current forcing. In this paper, the new method to determine the available maximum voltage is derived by the analythic method and by considering the factors of the voltage drop. So Determining the maximum voltage is very useful to enlarge the speed operation region in the flux weakening operation, the utility of the maximum voltage is increased.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Sensorless Control for Induction Motor Drives Fed By a Matrix Converter Using Power Theory (매트리스 컨버터를 이용한 유도전동기 구동장치를 위한 전력이론 기반의 센서리스 기법)

  • Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devices, and on-state switching device voltage drop are modelled using PQR transformation and compensated using a reference power control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system. Experimental results are shown to illustrate the feasibility of the proposed strategy.

A Study on the PWM Strategy and Gear Changing Techniques of an Inverter for Variable Speed Drives on Traction Motors (견인전동기 가변속 운전을 위한 인버터의 PWM 방법 및 패턴 절환기법에 관한 연구)

  • Seo, Yeong-Min;Park, Yeong-Jin;Hong, Sun-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.646-654
    • /
    • 1999
  • This paper deals with PWM patterns for harmonic reduction in inverter fed traction motors and the gear changing techniques for the variable speed drive of traction motor. GTOs are used as switching device of inverter because traction motor is a large load. To derive PWM rattern which can minimize the harmonics with the limited switching frequency, the output current and torque characteristic of SPWM and SHE PWM was analyzed. GTO inverter used for traction motor drive includes harmonics in the output current and torque by the limitation of switching frequency. However, the hybrid PWM method that adopt SPWM in the range of low frequency and SHE PWM in upper frequency range can achieve less harmonic characteristics in GTO inverters. If the traction motor is driven in variable speed by the proposed PWM pattern, 7 times of gear changing is needed. At the instant of the mode change, magnetic flux and torque may be altered and the large current flow. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter fed traction motor drive operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF