• Title/Summary/Keyword: Flux pump

Search Result 139, Processing Time 0.034 seconds

Greenhouse Heating Technology Development by using Riverbank Filtration Water (강변여과수를 이용한 온실난방기술 개발)

  • Moon, Jong-Pil;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Kang, Youn-Ku;Ryou, Young-Sun;Lee, Su-Jang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

MBR공정의 플럭스 향상 기술에 관한 연구

  • No, Seong-Hui;Kim, Seon-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.145-148
    • /
    • 2002
  • Membrane bioreactors for wastewater treatment must operate for long periods without chemical cleaning. This study investigates the critical flux concept introduced by Field et al. as a means for achieving this goal. We conducted two series of tests: at fixed transmembrane pressure(TMP) and at fixed permeate flux. set by a volumetric pump on the permeate. Comparison of constant pressure and constants flux tests under same conditions showed that the critical flux is almost identical to the limiting or pressure independent flux obtained in constant pressure. More generally, constant flux procedure below the critical flux avoids overfouling of the membrane in the initial stage and is more advantageous for membrane bioreactor operation.

  • PDF

An Experimental Study of Flow Boiling Heat Transfer inside Small-Diameter Round Tubes (원형 세관내 대류비등열전달에 관한 실험적 연구)

  • 추원호;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.748-755
    • /
    • 2004
  • Flow boiling heat transfer in small-diameter round tubes has been experimentally studied. The experimental apparatus consisted mainly of refrigerant pump, condenser, receiver, test section of a 1.67 mm inner-diameter round tube and pre-heater for control of refrigerant quality at the inlet of test section. To investigate the effect of bubble nucleation site characteristics of different tube materials, three different tubes of copper, aluminum and brass were used. The ranges of the major experimental parameters were 5∼30 ㎾/$m^2$ of the wall heat flux, 0.0∼0.9 of the inlet vapor quality and the refrigerant mass flux was fixed at 600 kg/$m^2$s. The experimental results showed that the flow boiling heat transfer coefficients in small tubes were affected only by heat flux, but independent of mass flux and vapor quality. The effect of tube material on flow boiling heat transfer was observed small.

Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube (세관내 이산화탄소의 증발 열전달 및 압력강화)

  • Jang, Seong-Il;Choi, Sun-Muk;Kim, Dae-Hui;Park, Ki-Won;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF

Study on the characteristic of heat exchange for vertical geothermal system using the numerical simulation (수치 시뮬레이션을 이용한 수직밀폐형 지열시스템의 채열특성에 관한 연구)

  • Nam, Yu-Jin;Oh, Jin-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • Ground source heat pump system can achieve high efficiency of performance by utilizing annually constant underground temperature to provide heat source for space heating and cooling. Generally, the depth of constant-temperature zone under the ground depends on surface heat flux and soil properties. The deeper the ground heat exchanger is installed, the higher the heat exchange rate can be acquired. However, in order to optimally design the system, it is necessary to consider both the installation cost and the system performance. In this study, performance analysis of ground source heat pump system according to the depth has been conducted through the case study.

Electromagnetic force analysis of electromagnetic pump (솔레노이드형 전자펌프의 전자력 해석)

  • Joung, Yung-Hwa;Ahn, Chang-Hoi;Kim, Dong-Hee;Kim, Han
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.80-82
    • /
    • 1995
  • The electromagnetic force of magnetic plunger for electromagnetic pump system are calculated by finite element method which consider the eddy current, the plunger motion. The mechanical motion equation are solved Rune-Kutta method, and coupled with the finite element method. With the external circuit equation dynamic simulation of the pump system are achieved. Electrostatic flux is verified by comparing with other commercial analysis software. Similar analysis of other type solenoidal actuators can be done by this procedure.

  • PDF

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

Numerical Simulation and Analysis for Optimum Design of a Thermoacoustic Refrigerator (공명관식 열음향 냉동기의 최적설계를 위한 수치모사 및 설계인자 분석)

  • Kim, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.329-340
    • /
    • 1995
  • Basic refrigeration effect and efficiency of a thermoacoustic refrigerator is studied. The refrigerator model for numerical simulation is composed of half wavelength resonator and appropriate stack of plate. Theoretical model for thermoacoustic refrigeration suggested by Swift et. al is adapted for numerical calculation. The model contains arbitrary viscosity effect of the gas filled in the resonator. The wave equation is integrated by using 4-th order Runge-Kutta algorithm to give pressure distribution along the stack of plate. Heat flux and COP are also calculated based on the energy flux equation. By analyzing the numerical simulation results, optimum values of design parameters for thermoacoustic refrigerator are obtained.

  • PDF